Welcome!

Open Source Cloud Authors: Yeshim Deniz, Zakia Bouachraoui, Elizabeth White, Liz McMillan, Pat Romanski

Related Topics: @CloudExpo, Open Source Cloud

@CloudExpo: Blog Feed Post

Big Data Contributes to Public Safety: Hadoop for Law Enforcement

The dominant Big Data solution is the Apache Hadoop ecosystem and one sector currently exploring Hadoop is law enforcement

CTOlabs.com, a subsidiary of the technology research, consulting and services firm Crucial Point LLC and a peer site of CTOvision.com, has just published a white paper providing context and use cases on Hadoop For Law Enforcement, an important mission-focused domain ripe for the application of more Big Data solutions.



From the report:

Big Data, the data too large and complex for your current information infrastructure to store and analyze, has changed every sector in government and industry. Today’s sensors and devices produce an overwhelming amount of information that is often unstructured, and solutions developed to handle Big Data now allowing us to track more information and run more complex analytics to gain a level of insight once thought impossible.

The dominant Big Data solution is the Apache Hadoop ecosystem which provides an open source platform for reliable, scalable, distributed computing on commodity hardware. Hadoop has exploded in the private sector and is the back end to many of the leading Web 2.0 companies and services. Hadoop also has a growing footprint in government, with numerous Hadoop clusters run by the Departments of Defense and Energy, as well as smaller deployments by other agencies.

One sector currently exploring Hadoop is law enforcement. Big Data analysis has already been highly effective in law enforcement and can make police departments more effective, accountable, efficient, and proactive. As Hadoop continues to spread through law enforcement agencies, it has the potential to permanently change the way policing is practiced and administered.

Download the report here: Hadoop For Law Enforcement

This post by was first published at CTOvision.com.

Read the original blog entry...

More Stories By Bob Gourley

Bob Gourley writes on enterprise IT. He is a founder of Crucial Point and publisher of CTOvision.com

IoT & Smart Cities Stories
The deluge of IoT sensor data collected from connected devices and the powerful AI required to make that data actionable are giving rise to a hybrid ecosystem in which cloud, on-prem and edge processes become interweaved. Attendees will learn how emerging composable infrastructure solutions deliver the adaptive architecture needed to manage this new data reality. Machine learning algorithms can better anticipate data storms and automate resources to support surges, including fully scalable GPU-c...
Machine learning has taken residence at our cities' cores and now we can finally have "smart cities." Cities are a collection of buildings made to provide the structure and safety necessary for people to function, create and survive. Buildings are a pool of ever-changing performance data from large automated systems such as heating and cooling to the people that live and work within them. Through machine learning, buildings can optimize performance, reduce costs, and improve occupant comfort by ...
The explosion of new web/cloud/IoT-based applications and the data they generate are transforming our world right before our eyes. In this rush to adopt these new technologies, organizations are often ignoring fundamental questions concerning who owns the data and failing to ask for permission to conduct invasive surveillance of their customers. Organizations that are not transparent about how their systems gather data telemetry without offering shared data ownership risk product rejection, regu...
René Bostic is the Technical VP of the IBM Cloud Unit in North America. Enjoying her career with IBM during the modern millennial technological era, she is an expert in cloud computing, DevOps and emerging cloud technologies such as Blockchain. Her strengths and core competencies include a proven record of accomplishments in consensus building at all levels to assess, plan, and implement enterprise and cloud computing solutions. René is a member of the Society of Women Engineers (SWE) and a m...
Poor data quality and analytics drive down business value. In fact, Gartner estimated that the average financial impact of poor data quality on organizations is $9.7 million per year. But bad data is much more than a cost center. By eroding trust in information, analytics and the business decisions based on these, it is a serious impediment to digital transformation.
Digital Transformation: Preparing Cloud & IoT Security for the Age of Artificial Intelligence. As automation and artificial intelligence (AI) power solution development and delivery, many businesses need to build backend cloud capabilities. Well-poised organizations, marketing smart devices with AI and BlockChain capabilities prepare to refine compliance and regulatory capabilities in 2018. Volumes of health, financial, technical and privacy data, along with tightening compliance requirements by...
Predicting the future has never been more challenging - not because of the lack of data but because of the flood of ungoverned and risk laden information. Microsoft states that 2.5 exabytes of data are created every day. Expectations and reliance on data are being pushed to the limits, as demands around hybrid options continue to grow.
Digital Transformation and Disruption, Amazon Style - What You Can Learn. Chris Kocher is a co-founder of Grey Heron, a management and strategic marketing consulting firm. He has 25+ years in both strategic and hands-on operating experience helping executives and investors build revenues and shareholder value. He has consulted with over 130 companies on innovating with new business models, product strategies and monetization. Chris has held management positions at HP and Symantec in addition to ...
Enterprises have taken advantage of IoT to achieve important revenue and cost advantages. What is less apparent is how incumbent enterprises operating at scale have, following success with IoT, built analytic, operations management and software development capabilities - ranging from autonomous vehicles to manageable robotics installations. They have embraced these capabilities as if they were Silicon Valley startups.
As IoT continues to increase momentum, so does the associated risk. Secure Device Lifecycle Management (DLM) is ranked as one of the most important technology areas of IoT. Driving this trend is the realization that secure support for IoT devices provides companies the ability to deliver high-quality, reliable, secure offerings faster, create new revenue streams, and reduce support costs, all while building a competitive advantage in their markets. In this session, we will use customer use cases...