Welcome!

Open Source Cloud Authors: Ruxit Blog, Elizabeth White, SmartBear Blog, Pat Romanski, Sematext Blog

News Feed Item

Fujitsu Develops World's First Stream Aggregation Technology to Rapidly Process Both Historical Data and Incoming Data

Kawasaki, Japan, Nov 19, 2012 - (JCN Newswire) - Fujitsu Laboratories Limited announced development of the world's first stream aggregation technology able to rapidly process both stored historical data and incoming streams of new data in a big data context.

The nature of big data requires that enormous volumes of data be processed at a high speed. When data is aggregated, longer aggregation times result in larger data volumes to be processed. This means computation times lengthen, which causes frequent updating operations to become more difficult. This is why improving the frequency of updates when aggregation times are lengthened has so far been challenging. Fujitsu Laboratories has therefore developed a technology that returns computation results quickly and manages snapshot operations, without re-doing computations or re-reading a variety of data types that change over time. As a result, even with high-frequency updating and long aggregation times, data can be processed 100 times faster than before.

This technology promises to improve both large volumes of batch processing and the processing of streaming data. Furthermore, in meteorology, it is now possible to show concentrated downpours in specific areas. As well as the utility gained for future weather forecasting, it may also have uses in new fields that demand the ability to process longitudinal data in real time.

Details of this technology will be announced at a special workshop lecture of the Special Interest Group on Software Interprise Modeling (SWIM) of the Institute of Electronics, Information and Communication Engineers (IEICE) held on Friday, November 30, at the Takanawa campus of Tokai University in Japan.

Background

Many companies are interested in using advanced ICT technology to improve their competitive position by rapidly processing large volumes of data. Some uses are large-scale batch processes performed periodically on transaction data, or processing streaming data in real time based on changing stock prices.

In the data processing of such activities, aggregating computations is essential. In large-volume batch processing, however, there are differences in the aggregation times and update frequency. Typically, large-volume batch processes that emphasize throughput operate on aggregation times lasting weeks or months. Streaming data processes emphasize response, on the other hand, and are in units of seconds or minutes. Update times roughly correspond with these.

Technological Challenges

The emphasis on batch processes and streaming processes is different, and therefore the process needs to be adapted according to application.

1. Large-volume batch processing technology

Large-volume batch processing handles large volumes of historical data, so each round of processing re-reads all data, which creates long delays before results are ready.

2. Conventional stream processing technology

The constant flow of data is held in a buffer - known as a window - and therefore each round of processing does not need to re-read any earlier data. Depending on the type of computation, however, the process does need access to all the data in that window in order to obtain computation results. For this reason, the duration of one round of computations will be proportionate to the window length, which diminishes responsiveness.

When using both historical (stored) and current (realtime streaming) data, with conventional processing methods, it has been difficult to simultaneously lengthen the aggregation intervals and raise the frequency of updates for the reasons outlined above.

Newly Developed Technology

Fujitsu Laboratories has developed a fast stream aggregation technology for long aggregation intervals and frequent updates, based on a combination of the two technologies described below.

1. Rapid pattern matching technology:

This is a technology that efficiently and directly picks out relevant items from an incoming stream of data. The conventional technique begins by analyzing the structure of input data and temporarily accumulating all input data in the memory. Next, it performs an extraction process of the items needed for aggregation to extract data. Structural analysis and item extraction is necessarily a two-step process. This technology is different in that it specifies the positions where items to be extracted will appear based on pattern matching, skipping over unneeded items thereby speeding up the process. Also, because pattern-matching is flexible, as well as using it with fixed-format data (such as CSV data) that conventional techniques use, it can work with other forms of data having recursive or hierarchical structures (such as XML data).

2. Snapshot operation management technology:

This is a technology that quickly returns computation results to deal with a variety of data types that change over time, without re-reading or re-computing data. The conventional technique is to store in memory an incoming stream of data following its time sequence. This technology stores the data even as it performs required computations, such as sorting according to a predefined order. It is always managed based on its computed state (snapshot operation), and therefore never needs to redo computations that involve all the data, including not only sums and averages but also minima, maxima, and medians. This lets it quickly pick out computation results.

Results

The response time for aggregation results when using a window length of 500,000 records was shown to be roughly 100 times faster than the commonly used open-source Complex Event Processing engine. It was also demonstrated that response time does not depend on window length (Figure 3).

This technology is expected to have applications with regard to the utilization of high-precision sensor data. Fujitsu Laboratories conducted verification of the technology using rainfall data generated by XRAIN(1), a project conducted by the Water and Disaster Management Bureau of the Ministry of Land, Infrastructure, Transport and Tourism. In the case of aggregating rainfall volume data collected over several hours from 500,000 locations in the Kansai region of western Japan, every several minutes a window of approximately 100 million records needs to be processed. The test conducted by Fujitsu Laboratories confirmed the technology's ability to execute data aggregation within intervals and no variation in aggregation times, and that the smooth movement of the rainfall area could be replicated, even for such a wide range of data. More than a sudden downpour, the actual volume of rainfall is what is strongly associated with disasters, and now, areas that require vigilance due to concentrated downpours can be readily verified.

Moreover, applications are anticipated for existing batch processing and stream processing. By enhancing the real-time aggregation of sales data, for example, it becomes possible to further strengthen production and inventory management.

Future Plans

Fujitsu plans to incorporate the new technology into its Big Data Platform and Big Data Middleware in fiscal 2013.

(1) Rainfall data generated by XRAIN:Rainfall data generated by the X-band MP Radar Rainfall Data, or XRAIN project, conducted by the Ministry of Land, Infrastructure, Transport and Tourism. XRAIN seeks to maintain extremely localized weather data, capturing rainfall data every 250 meters at one-minute intervals over a wide area.

About Fujitsu Laboratories

Founded in 1968 as a wholly owned subsidiary of Fujitsu Limited, Fujitsu Laboratories Limited is one of the premier research centers in the world. With a global network of laboratories in Japan, China, the United States and Europe, the organization conducts a wide range of basic and applied research in the areas of Next-generation Services, Computer Servers, Networks, Electronic Devices and Advanced Materials. For more information, please see: http://jp.fujitsu.com/labs/en.

About Fujitsu Limited

Fujitsu is the leading Japanese information and communication technology (ICT) company offering a full range of technology products, solutions and services. Over 170,000 Fujitsu people support customers in more than 100 countries. We use our experience and the power of ICT to shape the future of society with our customers. Fujitsu Limited (TSE:6702) reported consolidated revenues of 4.5 trillion yen (US$54 billion) for the fiscal year ended March 31, 2012. For more information, please see www.fujitsu.com.



Source: Fujitsu Limited

Contact:
Fujitsu Limited
Public and Investor Relations
www.fujitsu.com/global/news/contacts/
+81-3-3215-5259

Technical Contacts

Fujitsu Laboratories Ltd.
Software Systems Laboratories
Intelligent Technology Lab
E-mail: [email protected]


Copyright 2012 JCN Newswire. All rights reserved. www.japancorp.net

More Stories By JCN Newswire

Copyright 2008 JCN Newswire. All rights reserved. Republication or redistribution of JCN Newswire content is expressly prohibited without the prior written consent of JCN Newswire. JCN Newswire shall not be liable for any errors or delays in the content, or for any actions taken in reliance thereon.

@ThingsExpo Stories
There will be new vendors providing applications, middleware, and connected devices to support the thriving IoT ecosystem. This essentially means that electronic device manufacturers will also be in the software business. Many will be new to building embedded software or robust software. This creates an increased importance on software quality, particularly within the Industrial Internet of Things where business-critical applications are becoming dependent on products controlled by software. Qua...
In addition to all the benefits, IoT is also bringing new kind of customer experience challenges - cars that unlock themselves, thermostats turning houses into saunas and baby video monitors broadcasting over the internet. This list can only increase because while IoT services should be intuitive and simple to use, the delivery ecosystem is a myriad of potential problems as IoT explodes complexity. So finding a performance issue is like finding the proverbial needle in the haystack.
Machine Learning helps make complex systems more efficient. By applying advanced Machine Learning techniques such as Cognitive Fingerprinting, wind project operators can utilize these tools to learn from collected data, detect regular patterns, and optimize their own operations. In his session at 18th Cloud Expo, Stuart Gillen, Director of Business Development at SparkCognition, discussed how research has demonstrated the value of Machine Learning in delivering next generation analytics to imp...
Large scale deployments present unique planning challenges, system commissioning hurdles between IT and OT and demand careful system hand-off orchestration. In his session at @ThingsExpo, Jeff Smith, Senior Director and a founding member of Incenergy, will discuss some of the key tactics to ensure delivery success based on his experience of the last two years deploying Industrial IoT systems across four continents.
The 19th International Cloud Expo has announced that its Call for Papers is open. Cloud Expo, to be held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA, brings together Cloud Computing, Big Data, Internet of Things, DevOps, Digital Transformation, Microservices and WebRTC to one location. With cloud computing driving a higher percentage of enterprise IT budgets every year, it becomes increasingly important to plant your flag in this fast-expanding business opportuni...
The Internet of Things will challenge the status quo of how IT and development organizations operate. Or will it? Certainly the fog layer of IoT requires special insights about data ontology, security and transactional integrity. But the developmental challenges are the same: People, Process and Platform. In his session at @ThingsExpo, Craig Sproule, CEO of Metavine, demonstrated how to move beyond today's coding paradigm and shared the must-have mindsets for removing complexity from the develo...
Basho Technologies has announced the latest release of Basho Riak TS, version 1.3. Riak TS is an enterprise-grade NoSQL database optimized for Internet of Things (IoT). The open source version enables developers to download the software for free and use it in production as well as make contributions to the code and develop applications around Riak TS. Enhancements to Riak TS make it quick, easy and cost-effective to spin up an instance to test new ideas and build IoT applications. In addition to...
Internet of @ThingsExpo, taking place November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA, is co-located with the 19th International Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world and ThingsExpo Silicon Valley Call for Papers is now open.
IoT is rapidly changing the way enterprises are using data to improve business decision-making. In order to derive business value, organizations must unlock insights from the data gathered and then act on these. In their session at @ThingsExpo, Eric Hoffman, Vice President at EastBanc Technologies, and Peter Shashkin, Head of Development Department at EastBanc Technologies, discussed how one organization leveraged IoT, cloud technology and data analysis to improve customer experiences and effi...
"We've discovered that after shows 80% if leads that people get, 80% of the conversations end up on the show floor, meaning people forget about it, people forget who they talk to, people forget that there are actual business opportunities to be had here so we try to help out and keep the conversations going," explained Jeff Mesnik, Founder and President of ContentMX, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York City, NY.
With 15% of enterprises adopting a hybrid IT strategy, you need to set a plan to integrate hybrid cloud throughout your infrastructure. In his session at 18th Cloud Expo, Steven Dreher, Director of Solutions Architecture at Green House Data, discussed how to plan for shifting resource requirements, overcome challenges, and implement hybrid IT alongside your existing data center assets. Highlights included anticipating workload, cost and resource calculations, integrating services on both sides...
Manufacturers are embracing the Industrial Internet the same way consumers are leveraging Fitbits – to improve overall health and wellness. Both can provide consistent measurement, visibility, and suggest performance improvements customized to help reach goals. Fitbit users can view real-time data and make adjustments to increase their activity. In his session at @ThingsExpo, Mark Bernardo Professional Services Leader, Americas, at GE Digital, discussed how leveraging the Industrial Internet a...
Big Data engines are powering a lot of service businesses right now. Data is collected from users from wearable technologies, web behaviors, purchase behavior as well as several arbitrary data points we’d never think of. The demand for faster and bigger engines to crunch and serve up the data to services is growing exponentially. You see a LOT of correlation between “Cloud” and “Big Data” but on Big Data and “Hybrid,” where hybrid hosting is the sanest approach to the Big Data Infrastructure pro...
"My role is working with customers, helping them go through this digital transformation. I spend a lot of time talking to banks, big industries, manufacturers working through how they are integrating and transforming their IT platforms and moving them forward," explained William Morrish, General Manager Product Sales at Interoute, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York City, NY.
A critical component of any IoT project is what to do with all the data being generated. This data needs to be captured, processed, structured, and stored in a way to facilitate different kinds of queries. Traditional data warehouse and analytical systems are mature technologies that can be used to handle certain kinds of queries, but they are not always well suited to many problems, particularly when there is a need for real-time insights.
The best-practices for building IoT applications with Go Code that attendees can use to build their own IoT applications. In his session at @ThingsExpo, Indraneel Mitra, Senior Solutions Architect & Technology Evangelist at Cognizant, provided valuable information and resources for both novice and experienced developers on how to get started with IoT and Golang in a day. He also provided information on how to use Intel Arduino Kit, Go Robotics API and AWS IoT stack to build an application tha...
IoT generates lots of temporal data. But how do you unlock its value? You need to discover patterns that are repeatable in vast quantities of data, understand their meaning, and implement scalable monitoring across multiple data streams in order to monetize the discoveries and insights. Motif discovery and deep learning platforms are emerging to visualize sensor data, to search for patterns and to build application that can monitor real time streams efficiently. In his session at @ThingsExpo, ...
You think you know what’s in your data. But do you? Most organizations are now aware of the business intelligence represented by their data. Data science stands to take this to a level you never thought of – literally. The techniques of data science, when used with the capabilities of Big Data technologies, can make connections you had not yet imagined, helping you discover new insights and ask new questions of your data. In his session at @ThingsExpo, Sarbjit Sarkaria, data science team lead ...
Extracting business value from Internet of Things (IoT) data doesn’t happen overnight. There are several requirements that must be satisfied, including IoT device enablement, data analysis, real-time detection of complex events and automated orchestration of actions. Unfortunately, too many companies fall short in achieving their business goals by implementing incomplete solutions or not focusing on tangible use cases. In his general session at @ThingsExpo, Dave McCarthy, Director of Products...
Amazon has gradually rolled out parts of its IoT offerings in the last year, but these are just the tip of the iceberg. In addition to optimizing their back-end AWS offerings, Amazon is laying the ground work to be a major force in IoT – especially in the connected home and office. Amazon is extending its reach by building on its dominant Cloud IoT platform, its Dash Button strategy, recently announced Replenishment Services, the Echo/Alexa voice recognition control platform, the 6-7 strategic...