Welcome!

Open Source Cloud Authors: Pat Romanski, Elizabeth White, Liz McMillan, Rostyslav Demush, Yeshim Deniz

News Feed Item

Fujitsu Develops World's First Stream Aggregation Technology to Rapidly Process Both Historical Data and Incoming Data

Kawasaki, Japan, Nov 19, 2012 - (JCN Newswire) - Fujitsu Laboratories Limited announced development of the world's first stream aggregation technology able to rapidly process both stored historical data and incoming streams of new data in a big data context.

The nature of big data requires that enormous volumes of data be processed at a high speed. When data is aggregated, longer aggregation times result in larger data volumes to be processed. This means computation times lengthen, which causes frequent updating operations to become more difficult. This is why improving the frequency of updates when aggregation times are lengthened has so far been challenging. Fujitsu Laboratories has therefore developed a technology that returns computation results quickly and manages snapshot operations, without re-doing computations or re-reading a variety of data types that change over time. As a result, even with high-frequency updating and long aggregation times, data can be processed 100 times faster than before.

This technology promises to improve both large volumes of batch processing and the processing of streaming data. Furthermore, in meteorology, it is now possible to show concentrated downpours in specific areas. As well as the utility gained for future weather forecasting, it may also have uses in new fields that demand the ability to process longitudinal data in real time.

Details of this technology will be announced at a special workshop lecture of the Special Interest Group on Software Interprise Modeling (SWIM) of the Institute of Electronics, Information and Communication Engineers (IEICE) held on Friday, November 30, at the Takanawa campus of Tokai University in Japan.

Background

Many companies are interested in using advanced ICT technology to improve their competitive position by rapidly processing large volumes of data. Some uses are large-scale batch processes performed periodically on transaction data, or processing streaming data in real time based on changing stock prices.

In the data processing of such activities, aggregating computations is essential. In large-volume batch processing, however, there are differences in the aggregation times and update frequency. Typically, large-volume batch processes that emphasize throughput operate on aggregation times lasting weeks or months. Streaming data processes emphasize response, on the other hand, and are in units of seconds or minutes. Update times roughly correspond with these.

Technological Challenges

The emphasis on batch processes and streaming processes is different, and therefore the process needs to be adapted according to application.

1. Large-volume batch processing technology

Large-volume batch processing handles large volumes of historical data, so each round of processing re-reads all data, which creates long delays before results are ready.

2. Conventional stream processing technology

The constant flow of data is held in a buffer - known as a window - and therefore each round of processing does not need to re-read any earlier data. Depending on the type of computation, however, the process does need access to all the data in that window in order to obtain computation results. For this reason, the duration of one round of computations will be proportionate to the window length, which diminishes responsiveness.

When using both historical (stored) and current (realtime streaming) data, with conventional processing methods, it has been difficult to simultaneously lengthen the aggregation intervals and raise the frequency of updates for the reasons outlined above.

Newly Developed Technology

Fujitsu Laboratories has developed a fast stream aggregation technology for long aggregation intervals and frequent updates, based on a combination of the two technologies described below.

1. Rapid pattern matching technology:

This is a technology that efficiently and directly picks out relevant items from an incoming stream of data. The conventional technique begins by analyzing the structure of input data and temporarily accumulating all input data in the memory. Next, it performs an extraction process of the items needed for aggregation to extract data. Structural analysis and item extraction is necessarily a two-step process. This technology is different in that it specifies the positions where items to be extracted will appear based on pattern matching, skipping over unneeded items thereby speeding up the process. Also, because pattern-matching is flexible, as well as using it with fixed-format data (such as CSV data) that conventional techniques use, it can work with other forms of data having recursive or hierarchical structures (such as XML data).

2. Snapshot operation management technology:

This is a technology that quickly returns computation results to deal with a variety of data types that change over time, without re-reading or re-computing data. The conventional technique is to store in memory an incoming stream of data following its time sequence. This technology stores the data even as it performs required computations, such as sorting according to a predefined order. It is always managed based on its computed state (snapshot operation), and therefore never needs to redo computations that involve all the data, including not only sums and averages but also minima, maxima, and medians. This lets it quickly pick out computation results.

Results

The response time for aggregation results when using a window length of 500,000 records was shown to be roughly 100 times faster than the commonly used open-source Complex Event Processing engine. It was also demonstrated that response time does not depend on window length (Figure 3).

This technology is expected to have applications with regard to the utilization of high-precision sensor data. Fujitsu Laboratories conducted verification of the technology using rainfall data generated by XRAIN(1), a project conducted by the Water and Disaster Management Bureau of the Ministry of Land, Infrastructure, Transport and Tourism. In the case of aggregating rainfall volume data collected over several hours from 500,000 locations in the Kansai region of western Japan, every several minutes a window of approximately 100 million records needs to be processed. The test conducted by Fujitsu Laboratories confirmed the technology's ability to execute data aggregation within intervals and no variation in aggregation times, and that the smooth movement of the rainfall area could be replicated, even for such a wide range of data. More than a sudden downpour, the actual volume of rainfall is what is strongly associated with disasters, and now, areas that require vigilance due to concentrated downpours can be readily verified.

Moreover, applications are anticipated for existing batch processing and stream processing. By enhancing the real-time aggregation of sales data, for example, it becomes possible to further strengthen production and inventory management.

Future Plans

Fujitsu plans to incorporate the new technology into its Big Data Platform and Big Data Middleware in fiscal 2013.

(1) Rainfall data generated by XRAIN:Rainfall data generated by the X-band MP Radar Rainfall Data, or XRAIN project, conducted by the Ministry of Land, Infrastructure, Transport and Tourism. XRAIN seeks to maintain extremely localized weather data, capturing rainfall data every 250 meters at one-minute intervals over a wide area.

About Fujitsu Laboratories

Founded in 1968 as a wholly owned subsidiary of Fujitsu Limited, Fujitsu Laboratories Limited is one of the premier research centers in the world. With a global network of laboratories in Japan, China, the United States and Europe, the organization conducts a wide range of basic and applied research in the areas of Next-generation Services, Computer Servers, Networks, Electronic Devices and Advanced Materials. For more information, please see: http://jp.fujitsu.com/labs/en.

About Fujitsu Limited

Fujitsu is the leading Japanese information and communication technology (ICT) company offering a full range of technology products, solutions and services. Over 170,000 Fujitsu people support customers in more than 100 countries. We use our experience and the power of ICT to shape the future of society with our customers. Fujitsu Limited (TSE:6702) reported consolidated revenues of 4.5 trillion yen (US$54 billion) for the fiscal year ended March 31, 2012. For more information, please see www.fujitsu.com.



Source: Fujitsu Limited

Contact:
Fujitsu Limited
Public and Investor Relations
www.fujitsu.com/global/news/contacts/
+81-3-3215-5259

Technical Contacts

Fujitsu Laboratories Ltd.
Software Systems Laboratories
Intelligent Technology Lab
E-mail: [email protected]


Copyright 2012 JCN Newswire. All rights reserved. www.japancorp.net

More Stories By JCN Newswire

Copyright 2008 JCN Newswire. All rights reserved. Republication or redistribution of JCN Newswire content is expressly prohibited without the prior written consent of JCN Newswire. JCN Newswire shall not be liable for any errors or delays in the content, or for any actions taken in reliance thereon.

@ThingsExpo Stories
Everything run by electricity will eventually be connected to the Internet. Get ahead of the Internet of Things revolution. In his session at @ThingsExpo, Akvelon expert and IoT industry leader Sergey Grebnov provided an educational dive into the world of managing your home, workplace and all the devices they contain with the power of machine-based AI and intelligent Bot services for a completely streamlined experience.
It is of utmost importance for the future success of WebRTC to ensure that interoperability is operational between web browsers and any WebRTC-compliant client. To be guaranteed as operational and effective, interoperability must be tested extensively by establishing WebRTC data and media connections between different web browsers running on different devices and operating systems. In his session at WebRTC Summit at @ThingsExpo, Dr. Alex Gouaillard, CEO and Founder of CoSMo Software, presented ...
DXWorldEXPO LLC, the producer of the world's most influential technology conferences and trade shows has announced the 22nd International CloudEXPO | DXWorldEXPO "Early Bird Registration" is now open. Register for Full Conference "Gold Pass" ▸ Here (Expo Hall ▸ Here)
Amazon started as an online bookseller 20 years ago. Since then, it has evolved into a technology juggernaut that has disrupted multiple markets and industries and touches many aspects of our lives. It is a relentless technology and business model innovator driving disruption throughout numerous ecosystems. Amazon’s AWS revenues alone are approaching $16B a year making it one of the largest IT companies in the world. With dominant offerings in Cloud, IoT, eCommerce, Big Data, AI, Digital Assista...
Recently, REAN Cloud built a digital concierge for a North Carolina hospital that had observed that most patient call button questions were repetitive. In addition, the paper-based process used to measure patient health metrics was laborious, not in real-time and sometimes error-prone. In their session at 21st Cloud Expo, Sean Finnerty, Executive Director, Practice Lead, Health Care & Life Science at REAN Cloud, and Dr. S.P.T. Krishnan, Principal Architect at REAN Cloud, discussed how they built...
As ridesharing competitors and enhanced services increase, notable changes are occurring in the transportation model. Despite the cost-effective means and flexibility of ridesharing, both drivers and users will need to be aware of the connected environment and how it will impact the ridesharing experience. In his session at @ThingsExpo, Timothy Evavold, Executive Director Automotive at Covisint, discussed key challenges and solutions to powering a ride sharing and/or multimodal model in the age ...
When shopping for a new data processing platform for IoT solutions, many development teams want to be able to test-drive options before making a choice. Yet when evaluating an IoT solution, it’s simply not feasible to do so at scale with physical devices. Building a sensor simulator is the next best choice; however, generating a realistic simulation at very high TPS with ease of configurability is a formidable challenge. When dealing with multiple application or transport protocols, you would be...
Detecting internal user threats in the Big Data eco-system is challenging and cumbersome. Many organizations monitor internal usage of the Big Data eco-system using a set of alerts. This is not a scalable process given the increase in the number of alerts with the accelerating growth in data volume and user base. Organizations are increasingly leveraging machine learning to monitor only those data elements that are sensitive and critical, autonomously establish monitoring policies, and to detect...
Data is the fuel that drives the machine learning algorithmic engines and ultimately provides the business value. In his session at Cloud Expo, Ed Featherston, a director and senior enterprise architect at Collaborative Consulting, discussed the key considerations around quality, volume, timeliness, and pedigree that must be dealt with in order to properly fuel that engine.
In his session at @ThingsExpo, Dr. Robert Cohen, an economist and senior fellow at the Economic Strategy Institute, presented the findings of a series of six detailed case studies of how large corporations are implementing IoT. The session explored how IoT has improved their economic performance, had major impacts on business models and resulted in impressive ROIs. The companies covered span manufacturing and services firms. He also explored servicification, how manufacturing firms shift from se...
IoT solutions exploit operational data generated by Internet-connected smart “things” for the purpose of gaining operational insight and producing “better outcomes” (for example, create new business models, eliminate unscheduled maintenance, etc.). The explosive proliferation of IoT solutions will result in an exponential growth in the volume of IoT data, precipitating significant Information Governance issues: who owns the IoT data, what are the rights/duties of IoT solutions adopters towards t...
In his keynote at 18th Cloud Expo, Andrew Keys, Co-Founder of ConsenSys Enterprise, provided an overview of the evolution of the Internet and the Database and the future of their combination – the Blockchain. Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life settl...
With tough new regulations coming to Europe on data privacy in May 2018, Calligo will explain why in reality the effect is global and transforms how you consider critical data. EU GDPR fundamentally rewrites the rules for cloud, Big Data and IoT. In his session at 21st Cloud Expo, Adam Ryan, Vice President and General Manager EMEA at Calligo, examined the regulations and provided insight on how it affects technology, challenges the established rules and will usher in new levels of diligence arou...
Organizations planning enterprise data center consolidation and modernization projects are faced with a challenging, costly reality. Requirements to deploy modern, cloud-native applications simultaneously with traditional client/server applications are almost impossible to achieve with hardware-centric enterprise infrastructure. Compute and network infrastructure are fast moving down a software-defined path, but storage has been a laggard. Until now.
Digital Transformation is much more than a buzzword. The radical shift to digital mechanisms for almost every process is evident across all industries and verticals. This is often especially true in financial services, where the legacy environment is many times unable to keep up with the rapidly shifting demands of the consumer. The constant pressure to provide complete, omnichannel delivery of customer-facing solutions to meet both regulatory and customer demands is putting enormous pressure on...
Dion Hinchcliffe is an internationally recognized digital expert, bestselling book author, frequent keynote speaker, analyst, futurist, and transformation expert based in Washington, DC. He is currently Chief Strategy Officer at the industry-leading digital strategy and online community solutions firm, 7Summits.
IoT is at the core or many Digital Transformation initiatives with the goal of re-inventing a company's business model. We all agree that collecting relevant IoT data will result in massive amounts of data needing to be stored. However, with the rapid development of IoT devices and ongoing business model transformation, we are not able to predict the volume and growth of IoT data. And with the lack of IoT history, traditional methods of IT and infrastructure planning based on the past do not app...
"Akvelon is a software development company and we also provide consultancy services to folks who are looking to scale or accelerate their engineering roadmaps," explained Jeremiah Mothersell, Marketing Manager at Akvelon, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
More and more brands have jumped on the IoT bandwagon. We have an excess of wearables – activity trackers, smartwatches, smart glasses and sneakers, and more that track seemingly endless datapoints. However, most consumers have no idea what “IoT” means. Creating more wearables that track data shouldn't be the aim of brands; delivering meaningful, tangible relevance to their users should be. We're in a period in which the IoT pendulum is still swinging. Initially, it swung toward "smart for smart...
IoT is rapidly becoming mainstream as more and more investments are made into the platforms and technology. As this movement continues to expand and gain momentum it creates a massive wall of noise that can be difficult to sift through. Unfortunately, this inevitably makes IoT less approachable for people to get started with and can hamper efforts to integrate this key technology into your own portfolio. There are so many connected products already in place today with many hundreds more on the h...