Open Source Cloud Authors: John Mertic, Yeshim Deniz, Ram Sonagara, Liz McMillan, Pat Romanski

Related Topics: Apache, Java IoT, Open Source Cloud, IoT User Interface, @CloudExpo

Apache: Blog Feed Post

GridGain and Hadoop: Differences and Synergies

Now data can be analyzed and processed at any point of its lifecycle

GridGain is Java-based middleware for in-memory processing of big data in a distributed environment. It is based on high performance in-memory data platform that integrates fast In-Memory MapReduce implementation with In-Memory Data Grid technology delivering easy to use and easy to scale software. Using GridGain you can process terabytes of data, on 1000s of nodes in under a second.

GridGain typically resides between business, analytics, transactional or BI applications and long term data storage such as RDBMS, ERP or Hadoop HDFS, and provides in-memory data platform for high performance, low latency data storage and processing.

Both, GridGain and Hadoop, are designed for parallel processing of distributed data. However, both products serve very different goals and in most cases are very complementary to each other. Hadoop is mostly geared towards batch-oriented offline processing of historical and analytics payloads where latencies and transactions don’t really matter, while GridGain is meant for real-time in-memory processing of both transactional and non-transactional live data with very low latencies. To better understand where each product really fits, let us compare some main concepts of each product.

GridGain In-Memory Compute Grid vs Hadoop MapReduce
is a programming model developed by Google for processing large data sets of data stored on disks. Hadoop MapReduce is an implementation of such model. The model is based on the fact that data in a single file can be distributed across multiple nodes and hence the processing of those files has to be co-located on the same nodes to avoid moving data around. The processing is based on scanning files record by record in parallel on multiple nodes and then reducing the results in parallel on multiple nodes as well. Because of that, standard disk-based MapReduce is good for problem sets which require analyzing every single record in a file and does not fit for cases when direct access to a certain data record is required. Furthermore, due to offline batch orientation of Hadoop it is not suited for low-latency applications.

GridGain In-Memory Compute Grid (IMCG) on the other hand is geared towards in-memory computations and very low latencies. GridGain IMCG has its own implementation of MapReduce which is designed specifically for real-time in-memory processing use cases and is very different from Hadoop one. Its main goal is to split a task into multiple sub-tasks, load balance those sub-tasks among available cluster nodes, execute them in parallel, then aggregate the results from those sub-tasks and return them to user.

Splitting tasks into multiple sub-tasks and assigning them to nodes is the *mapping* step and aggregating of results is *reducing* step. However, there is no concept of mandatory data built in into this design and it can work in the absence of any data at all which makes it a good fit for both, stateless and state-full computations, like traditional HPC. In cases when data is present, GridGain IMCG will also automatically colocate computations with the nodes where the data is to avoid redundant data movement.

It is also worth mentioning, that unlike Hadoop, GridGain IMCG is very well suited for processing of computations which are very short-lived in nature, e.g. below 100 milliseconds and may not require any mapping or reducing.

Here is a simple Java coding example of GridGain IMCG which counts number of letters in a phrase by splitting it into multiple words, assigning each word to a sub-task for parallel remote execution in the map step, and then adding all lengths receives from remote jobs in reduce step.

    int letterCount = g.reduce(
        // Mapper
        new GridClosure<String, Integer>() {
            @Override public Integer apply(String s) {
                return s.length();
        Arrays.asList("GridGain Letter Count".split(" ")),
        // Reducer

GridGain In-Memory Data Grid vs Hadoop Distributed File System
Hadoop Distributed File System (HDFS) is designed for storing large amounts of data in files on disk. Just like any file system, the data is mostly stored in textual or binary formats. To find a single record inside an HDFS file requires a file scan. Also, being distributed in nature, to update a single record within a file in HDFS requires copying of a whole file (file in HDFS can only be appended). This makes HDFS well-suited for cases when data is appended at the end of a file, but not well suited for cases when data needs to be located and/or updated in the middle of a file. With indexing technologies, like HBase or Impala, data access becomes somewhat easier because keys can be indexed, but not being able to index into values (secondary indexes) only allow for primitive query execution.

GridGain In-Memory Data Grid (IMDG) on the other hand is an in-memory key-value data store. The roots of IMDGs came from distributed caching, however GridGain IMDG also adds transactions, data partitioning, and SQL querying to cached data. The main difference with HDFS (or Hadoop ecosystem overall) is the ability to transact and update any data directly in real time. This makes GridGain IMDG well suited for working on operational data sets, the data sets that are currently being updated and queried, while HDFS is suited for working on historical data which is constant and will never change.

Unlike a file system, GridGain IMDG works with user domain model by directly caching user application objects. Objects are accessed and updated by key which allows IMDG to work with volatile data which requires direct key-based access.

GridGain IMDG allows for indexing into keys and values (i.e. primary and secondary indices) and supports native SQL for data querying & processing. One of unique features of GridGain IMDG is support for distributed joins which allow to execute complex SQL queries on the data in-memory without limitations.

GridGain and Hadoop Working Together
To summarize:

Hadoop essentially is a Big Data warehouse which is good for batch processing of historic data that never changes, while GridGain, on the other hand, is an In-Memory Data Platform which works with your current operational data set in transactional fashion with very low latencies. Focusing on very different use cases make GridGain and Hadoop very complementary with each other.

Up-Stream Integration
The diagram above shows integration between GridGain and Hadoop. Here we have GridGain In-Memory Compute Grid and Data Grid working directly in real-time with user application by partitioning and caching data within data grid, and executing in-memory computations and SQL queries on it. Every so often, when data becomes historic, it is snapshotted into HDFS where it can be analyzed using Hadoop MapReduce and analytical tools from Hadoop eco-system.

Down-Stream Integration
Another possible way to integrate would be for cases when data is already stored in HDFS but needs to be loaded into IMDG for faster in-memory processing. For cases like that GridGain provides fast loading mechanisms from HDFS into GridGain IMDG where it can be further analyzed using GridGain in-memory Map Reduce and indexed SQL queries.

Integration between an in-memory data platform like GridGain and disk based data platform like Hadoop allows businesses to get valuable insights into the whole data set at once, including volatile operational data set cached in memory, as well as historic data set stored in Hadoop. This essentially eliminates any gaps in processing time caused by Extract-Transfer-Load (ETL) process of copying data from operational system of records, like standard databases, into historic data warehouses like Hadoop. Now data can be analyzed and processed at any point of its lifecycle, from the moment when it gets into the system up until it gets put away into a warehouse.

Read the original blog entry...

More Stories By Thomas Krafft

Over 15 years of experience in marketing and demand creation, with strategies driving over $500 million in revenue for a variety of companies in several high-growth and competitive markets, including consumer software and web services, ecommerce, demand creation through web and search, big data, and now healthcare.

@ThingsExpo Stories
SYS-CON Events announced today that Streamlyzer will exhibit at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Streamlyzer is a powerful analytics for video streaming service that enables video streaming providers to monitor and analyze QoE (Quality-of-Experience) from end-user devices in real time.
You have great SaaS business app ideas. You want to turn your idea quickly into a functional and engaging proof of concept. You need to be able to modify it to meet customers' needs, and you need to deliver a complete and secure SaaS application. How could you achieve all the above and yet avoid unforeseen IT requirements that add unnecessary cost and complexity? You also want your app to be responsive in any device at any time. In his session at 19th Cloud Expo, Mark Allen, General Manager of...
@ThingsExpo has been named the Top 5 Most Influential Internet of Things Brand by Onalytica in the ‘The Internet of Things Landscape 2015: Top 100 Individuals and Brands.' Onalytica analyzed Twitter conversations around the #IoT debate to uncover the most influential brands and individuals driving the conversation. Onalytica captured data from 56,224 users. The PageRank based methodology they use to extract influencers on a particular topic (tweets mentioning #InternetofThings or #IoT in this ...
SYS-CON Events announced today that Super Micro Computer, Inc., a global leader in Embedded and IoT solutions, will exhibit at SYS-CON's 20th International Cloud Expo®, which will take place on June 7-9, 2017, at the Javits Center in New York City, NY. Supermicro (NASDAQ: SMCI), the leading innovator in high-performance, high-efficiency server technology, is a premier provider of advanced server Building Block Solutions® for Data Center, Cloud Computing, Enterprise IT, Hadoop/Big Data, HPC and ...
Cloud based infrastructure deployment is becoming more and more appealing to customers, from Fortune 500 companies to SMEs due to its pay-as-you-go model. Enterprise storage vendors are able to reach out to these customers by integrating in cloud based deployments; this needs adaptability and interoperability of the products confirming to cloud standards such as OpenStack, CloudStack, or Azure. As compared to off the shelf commodity storage, enterprise storages by its reliability, high-availabil...
Explosive growth in connected devices. Enormous amounts of data for collection and analysis. Critical use of data for split-second decision making and actionable information. All three are factors in making the Internet of Things a reality. Yet, any one factor would have an IT organization pondering its infrastructure strategy. How should your organization enhance its IT framework to enable an Internet of Things implementation? In his session at @ThingsExpo, James Kirkland, Red Hat's Chief Arch...
The IoT industry is now at a crossroads, between the fast-paced innovation of technologies and the pending mass adoption by global enterprises. The complexity of combining rapidly evolving technologies and the need to establish practices for market acceleration pose a strong challenge to global enterprises as well as IoT vendors. In his session at @ThingsExpo, Clark Smith, senior product manager for Numerex, will discuss how Numerex, as an experienced, established IoT provider, has embraced a ...
We are reaching the end of the beginning with WebRTC, and real systems using this technology have begun to appear. One challenge that faces every WebRTC deployment (in some form or another) is identity management. For example, if you have an existing service – possibly built on a variety of different PaaS/SaaS offerings – and you want to add real-time communications you are faced with a challenge relating to user management, authentication, authorization, and validation. Service providers will w...
When people aren’t talking about VMs and containers, they’re talking about serverless architecture. Serverless is about no maintenance. It means you are not worried about low-level infrastructural and operational details. An event-driven serverless platform is a great use case for IoT. In his session at @ThingsExpo, Animesh Singh, an STSM and Lead for IBM Cloud Platform and Infrastructure, will detail how to build a distributed serverless, polyglot, microservices framework using open source tec...
November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Penta Security is a leading vendor for data security solutions, including its encryption solution, D’Amo. By using FPE technology, D’Amo allows for the implementation of encryption technology to sensitive data fields without modification to schema in the database environment. With businesses having their data become increasingly more complicated in their mission-critical applications (such as ERP, CRM, HRM), continued ...
SYS-CON Events announced today that Cloudbric, a leading website security provider, will exhibit at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Cloudbric is an elite full service website protection solution specifically designed for IT novices, entrepreneurs, and small and medium businesses. First launched in 2015, Cloudbric is based on the enterprise level Web Application Firewall by Penta Security Sys...
The Open Connectivity Foundation (OCF), sponsor of the IoTivity open source project, and AllSeen Alliance, which provides the AllJoyn® open source IoT framework, today announced that the two organizations’ boards have approved a merger under the OCF name and bylaws. This merger will advance interoperability between connected devices from both groups, enabling the full operating potential of IoT and representing a significant step towards a connected ecosystem.
You think you know what’s in your data. But do you? Most organizations are now aware of the business intelligence represented by their data. Data science stands to take this to a level you never thought of – literally. The techniques of data science, when used with the capabilities of Big Data technologies, can make connections you had not yet imagined, helping you discover new insights and ask new questions of your data. In his session at @ThingsExpo, Sarbjit Sarkaria, data science team lead ...
A completely new computing platform is on the horizon. They’re called Microservers by some, ARM Servers by others, and sometimes even ARM-based Servers. No matter what you call them, Microservers will have a huge impact on the data center and on server computing in general. Although few people are familiar with Microservers today, their impact will be felt very soon. This is a new category of computing platform that is available today and is predicted to have triple-digit growth rates for some ...
SYS-CON Events announced today that Roundee / LinearHub will exhibit at the WebRTC Summit at @ThingsExpo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. LinearHub provides Roundee Service, a smart platform for enterprise video conferencing with enhanced features such as automatic recording and transcription service. Slack users can integrate Roundee to their team via Slack’s App Directory, and '/roundee' command lets your video conference ...
SYS-CON Events announced today that Enzu will exhibit at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Enzu’s mission is to be the leading provider of enterprise cloud solutions worldwide. Enzu enables online businesses to use its IT infrastructure to their competitive advantage. By offering a suite of proven hosting and management services, Enzu wants companies to focus on the core of their online busine...
SYS-CON Events announced today that SoftNet Solutions will exhibit at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. SoftNet Solutions specializes in Enterprise Solutions for Hadoop and Big Data. It offers customers the most open, robust, and value-conscious portfolio of solutions, services, and tools for the shortest route to success with Big Data. The unique differentiator is the ability to architect and...
In past @ThingsExpo presentations, Joseph di Paolantonio has explored how various Internet of Things (IoT) and data management and analytics (DMA) solution spaces will come together as sensor analytics ecosystems. This year, in his session at @ThingsExpo, Joseph di Paolantonio from DataArchon, will be adding the numerous Transportation areas, from autonomous vehicles to “Uber for containers.” While IoT data in any one area of Transportation will have a huge impact in that area, combining senso...
Why do your mobile transformations need to happen today? Mobile is the strategy that enterprise transformation centers on to drive customer engagement. In his general session at @ThingsExpo, Roger Woods, Director, Mobile Product & Strategy – Adobe Marketing Cloud, covered key IoT and mobile trends that are forcing mobile transformation, key components of a solid mobile strategy and explored how brands are effectively driving mobile change throughout the enterprise.
"Matrix is an ambitious open standard and implementation that's set up to break down the fragmentation problems that exist in IP messaging and VoIP communication," explained John Woolf, Technical Evangelist at Matrix, in this SYS-CON.tv interview at @ThingsExpo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.