Welcome!

Open Source Cloud Authors: Scott Millis, Elizabeth White, XebiaLabs Blog, Pat Romanski, Liz McMillan

Related Topics: Containers Expo Blog, Java IoT, Microservices Expo, Open Source Cloud, @CloudExpo

Containers Expo Blog: Article

Considerations for SSD Deployments

SSD is a great technology, but your best value from it will come when you deploy it most efficiently

Legacy storage architectures do not perform very efficiently in virtual computing environments. The very random, very write-intensive I/O patterns generated by virtual hosts drive storage costs up as enterprises either add spindles or look to newer storage technologies like solid state disk (SSD) to address the IOPS shortfall.

SSD costs are coming down, but they are still significantly higher than spinning disk costs. When enterprises do consider SSD, how it is used and where it is placed in the virtual infrastructure can make a big difference in how much enterprises have to spend to meet their performance requirements. It can also impose certain operational limitations that may or may not be issues in specific environments.

Some of the key considerations that need to be taken into account are SSD placement (in the host or in the SAN), high availability/failover requirements, caching vs logging architectures, and the value of preserving existing investments vs rip and replace investments that promise storage hardware specifically designed for virtual environments.

SSD Placement
There are two basic locations to place SSD, each of which offers its own pros and cons. Host-based SSD will generally offer the lowest storage latencies, particularly if the SSD is located on PCIe cards. In non-clustered environments where it is clear that IOPS and storage latencies are the key performance problems, these types of devices can be very valuable. In most cases, they will remove storage as the performance problem.

But don't necessarily expect that in your environment, these devices will deliver their rated IOPS directly to your applications. In removing storage as the bottleneck, system performance will now be determined by whatever the next bottleneck in the system is. That could be CPU, memory, operating system, or any number of other potential issues. This phenomenon is referred to as Amdahl's Law.

What you probably care about are application IOPS. Test the devices you're considering in your environment before purchase, so you know exactly the level of performance gain they will provide to you. Then you can make a more informed decision about whether or not you can cost justify them for use with your workloads. Paying for performance you can't use is like buying a Ferrari for use on America's interstate system - you may never get out of second gear.

Raw SSD technology generally can provide blazingly fast read performance. Write performance, however, varies depending on whether you are writing randomly or sequentially. The raw technical specs on many SSD devices indicate that sequential write performance may be half that of read performance, and random write performance may be half again as slow. Write latencies may also not be deterministic because of how SSD devices manage the space they are writing to. Many SSD vendors are combining software and other infrastructure around their SSD devices to address some of these issues. If you're looking at SSD, look to the software it's packaged with to make sure the SSD capacity you're buying can be used most efficiently.

Host-based SSD introduces failover limitations. If you have implemented a product like VMware HA in your environment to automatically recover failed nodes, any data sitting in a host-based SSD device that has not been written through to shared storage will not be available on recovery. This can lead to data loss on recovery - something that may or may not be an issue in your environment. Even though SSD is non-volatile storage, if the node it is sitting in is down, you can't get to it. You can get to it after that node is recovered, but the issue here is whether or not you can automatically fail over and have access to it.

Because of this issue, most host-based SSD products implement what is called a "write-through" cache, which means that they don't acknowledge writes at SSD latencies, they actually write them through to shared disk and then send the write acknowledgement back from there. Anything on shared disk can be potentially recovered by any other node in the cluster, ensuring that no committed data is unavailable on failover. But what this means is that you won't get any write performance improvements from SSD, just better read performance.

What does your workload look like in terms of read vs write percentages? Most virtual environments are very write intensive, much more so than they ever were in physical environments, and virtual desktop infrastructure (VDI) environments can be as much as 90% writes when operating in steady state mode. If write performance is your problem, host-based SSD with a write-through cache may not help very much in the big picture.

SAN-based SSD, on the other hand, can support failover without data loss, and if implemented with a write-back cache can provide write performance speedups as well. But many implementations available for use with SAN arrays are really only designed to speed up reads. Check carefully as you consider SSD to understand how it is implemented, and how well that maps to the actual performance requirements in your environment.

Caching vs Logging Architectures
Most SSD, wherever it is implemented, is used as a cache. Sizing guidelines for caches start with the cache as a percentage of the back-end storage it is front-ending. Generally the cache needs to be somewhere between 3% to 6% of the back-end storage, so larger data store capacities require larger caches. For example, 20TB of back-end data might require 1TB of SSD cache (5%).

Caches are generally just speeding up reads, but if you are working with a write-back cache, then the cache will have to be split between SSD capacity used to speed up reads and SSD capacity used to speed up writes. Everything else being equal in terms of performance requirements, write-back caches will have to be larger than write-through caches, but will provide more balanced performance gains (across both reads and writes).

Logging architectures, by definition, speed up writes, making them a good fit for write-intensive workloads like those found in virtual computing environments. Logs provide write performance gains by taking the very random workload and essentially removing the randomness from it by writing it sequentially to a log, acknowledging the writes from there, then asynchronously de-staging them to a shared storage pool. This means that the same SSD device used in a log vs used in a cache will be faster, assuming some randomness to the workload. The write performance the guest VMs see is the performance of the log device operating in sequential write mode almost all the time, and it can result in write performance improvements of up to 10x (relative to that same device operating in the random mode it would normally be operating in). And a log provides write performance improvements for all writes from all VMs all the time. (What's also interesting is that if you are getting 10x the IOPS from your current spinning disk, given Amdahl's Law, you may not even need to purchase SSD to remove storage as the performance bottleneck.)

Logs are very small (10GB or so) and are dedicated to a host, while the shared storage pool is accessible to all nodes in a cluster and primarily handles read requests. In a 20 node cluster with 20TB of shared data, you would need 200GB for the logs (10GB x 20 hosts) vs the 1TB you would need if SSD was used as a cache. Logs are much more efficient than caches for write performance improvements, resulting in lower costs.

If logs are located on SAN-based SSD, you not only get the write performance improvements, but this design fully supports node failover without data loss, a very nice differentiator from write-through cache implementations.

But what about read performance? This is where caches excel, and a write log doesn't seem to address that. That's true, and why it's important to combine a logging architecture with storage tiering. Any SSD capacity not used by the logs can be configured into a fast tier 0, which will provide the read performance improvements for any data residing in that tier. The bottom line here is that you can get better overall storage performance improvements from a "log + tiering" design than you can from a cache design while using 50% - 90% less high performance device (in this case, SSD) capacity. In our example above, if you buy a 256GB SAN-based SSD device and use it in a 20 node cluster, you'll get SSD sequential write performance for every write all the time, and have 56GB left over to put into a tier 0. Compare that to buying 1TB+ of cache capacity at SSD prices.

With single image management technology like linked clones or other similar implementations, you can lock your VM templates into this tier, and very efficiently gain read performance improvements against the shared blocks in those templates for all child VMs all the time. Single image management technology can help make the use of SSD capacity more efficient in either a cache or a log architecture, so don't overlook it as long as it is implemented in a way that does not impinge upon your storage performance.

Purpose-Built Storage Hardware
There are some interesting new array designs that leverage SSD, sometimes in combination with some of the other technologies mentioned above (log architectures, storage tiering, single image manage-ment, spinning disk). Designed specifically with the storage performance issues in virtual environments in mind, there is no doubt that these arrays can outperform legacy arrays. But for most enterprises, that may not be the operative question.

It's rare that an enterprise doesn't already have a sizable investment in storage. Many of these existing arrays support SSD, which can be deployed in a SAN-based cache or fast tier. It's much easier, and potentially much less disruptive and expensive if existing storage investments could be leveraged to address the storage performance issues in virtual environments. It's also less risky, since most of the hot new "virtual computing-aware" arrays and appliances are built by startups, not proven vendors. If there are pure software-based options to consider that support heterogeneous storage hardware and can address the storage issues common in virtual computing environments, allowing you to potentially take advantage of SSD capacity that fits into your current arrays, this could be a simpler, more cost-effective, and less risky option than buying from a storage startup. But only, of course, if it adequately resolves your performance problem.

The Take-Away
If there's one point you should take away from this article, it's that just blindly throwing SSD at a storage performance problem in virtual computing environments is not going to be a very efficient or cost-effective way to address your particular issues. Consider how much more performance you need, whether you need it on reads, writes, or both, whether you need to failover without data loss, and whether preserving existing storage hardware investments is important to you. SSD is a great technology, but your best value from it will come when you deploy it most efficiently.

More Stories By Eric Burgener

Eric Burgener is vice president product management at Virsto Software. He has worked on emerging technologies for almost his entire career, with early stints at pioneering companies such as Tandem, Pyramid, Sun, Veritas, ConvergeNet, Mendocino, and Topio, among others, on fault tolerance and high availability, replication, backup, continuous data protection, and server virtualization technologies.

Over the last 25 years Eric has worked across a variety of functional areas, including sales, product management, marketing, business development, and technical support, and also spent time as an Executive in Residence with Mayfield and a storage industry analyst at Taneja Group. Before joining Virsto, he was VP of Marketing at InMage.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@ThingsExpo Stories
According to Forrester Research, every business will become either a digital predator or digital prey by 2020. To avoid demise, organizations must rapidly create new sources of value in their end-to-end customer experiences. True digital predators also must break down information and process silos and extend digital transformation initiatives to empower employees with the digital resources needed to win, serve, and retain customers.
The WebRTC Summit New York, to be held June 6-8, 2017, at the Javits Center in New York City, NY, announces that its Call for Papers is now open. Topics include all aspects of improving IT delivery by eliminating waste through automated business models leveraging cloud technologies. WebRTC Summit is co-located with 20th International Cloud Expo and @ThingsExpo. WebRTC is the future of browser-to-browser communications, and continues to make inroads into the traditional, difficult, plug-in web co...
In his general session at 19th Cloud Expo, Manish Dixit, VP of Product and Engineering at Dice, discussed how Dice leverages data insights and tools to help both tech professionals and recruiters better understand how skills relate to each other and which skills are in high demand using interactive visualizations and salary indicator tools to maximize earning potential. Manish Dixit is VP of Product and Engineering at Dice. As the leader of the Product, Engineering and Data Sciences team at D...
The Internet of Things (IoT) promises to simplify and streamline our lives by automating routine tasks that distract us from our goals. This promise is based on the ubiquitous deployment of smart, connected devices that link everything from industrial control systems to automobiles to refrigerators. Unfortunately, comparatively few of the devices currently deployed have been developed with an eye toward security, and as the DDoS attacks of late October 2016 have demonstrated, this oversight can ...
"We're a cybersecurity firm that specializes in engineering security solutions both at the software and hardware level. Security cannot be an after-the-fact afterthought, which is what it's become," stated Richard Blech, Chief Executive Officer at Secure Channels, in this SYS-CON.tv interview at @ThingsExpo, held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA.
What happens when the different parts of a vehicle become smarter than the vehicle itself? As we move toward the era of smart everything, hundreds of entities in a vehicle that communicate with each other, the vehicle and external systems create a need for identity orchestration so that all entities work as a conglomerate. Much like an orchestra without a conductor, without the ability to secure, control, and connect the link between a vehicle’s head unit, devices, and systems and to manage the ...
"Once customers get a year into their IoT deployments, they start to realize that they may have been shortsighted in the ways they built out their deployment and the key thing I see a lot of people looking at is - how can I take equipment data, pull it back in an IoT solution and show it in a dashboard," stated Dave McCarthy, Director of Products at Bsquare Corporation, in this SYS-CON.tv interview at @ThingsExpo, held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA.
Data is the fuel that drives the machine learning algorithmic engines and ultimately provides the business value. In his session at Cloud Expo, Ed Featherston, a director and senior enterprise architect at Collaborative Consulting, discussed the key considerations around quality, volume, timeliness, and pedigree that must be dealt with in order to properly fuel that engine.
Businesses and business units of all sizes can benefit from cloud computing, but many don't want the cost, performance and security concerns of public cloud nor the complexity of building their own private clouds. Today, some cloud vendors are using artificial intelligence (AI) to simplify cloud deployment and management. In his session at 20th Cloud Expo, Ajay Gulati, Co-founder and CEO of ZeroStack, will discuss how AI can simplify cloud operations. He will cover the following topics: why clou...
As data explodes in quantity, importance and from new sources, the need for managing and protecting data residing across physical, virtual, and cloud environments grow with it. Managing data includes protecting it, indexing and classifying it for true, long-term management, compliance and E-Discovery. Commvault can ensure this with a single pane of glass solution – whether in a private cloud, a Service Provider delivered public cloud or a hybrid cloud environment – across the heterogeneous enter...
Everyone knows that truly innovative companies learn as they go along, pushing boundaries in response to market changes and demands. What's more of a mystery is how to balance innovation on a fresh platform built from scratch with the legacy tech stack, product suite and customers that continue to serve as the business' foundation. In his General Session at 19th Cloud Expo, Michael Chambliss, Head of Engineering at ReadyTalk, discussed why and how ReadyTalk diverted from healthy revenue and mor...
The many IoT deployments around the world are busy integrating smart devices and sensors into their enterprise IT infrastructures. Yet all of this technology – and there are an amazing number of choices – is of no use without the software to gather, communicate, and analyze the new data flows. Without software, there is no IT. In this power panel at @ThingsExpo, moderated by Conference Chair Roger Strukhoff, Dave McCarthy, Director of Products at Bsquare Corporation; Alan Williamson, Principal...
The 20th International Cloud Expo has announced that its Call for Papers is open. Cloud Expo, to be held June 6-8, 2017, at the Javits Center in New York City, brings together Cloud Computing, Big Data, Internet of Things, DevOps, Containers, Microservices and WebRTC to one location. With cloud computing driving a higher percentage of enterprise IT budgets every year, it becomes increasingly important to plant your flag in this fast-expanding business opportunity. Submit your speaking proposal ...
You have great SaaS business app ideas. You want to turn your idea quickly into a functional and engaging proof of concept. You need to be able to modify it to meet customers' needs, and you need to deliver a complete and secure SaaS application. How could you achieve all the above and yet avoid unforeseen IT requirements that add unnecessary cost and complexity? You also want your app to be responsive in any device at any time. In his session at 19th Cloud Expo, Mark Allen, General Manager of...
Successful digital transformation requires new organizational competencies and capabilities. Research tells us that the biggest impediment to successful transformation is human; consequently, the biggest enabler is a properly skilled and empowered workforce. In the digital age, new individual and collective competencies are required. In his session at 19th Cloud Expo, Bob Newhouse, CEO and founder of Agilitiv, drew together recent research and lessons learned from emerging and established compa...
"IoT is going to be a huge industry with a lot of value for end users, for industries, for consumers, for manufacturers. How can we use cloud to effectively manage IoT applications," stated Ian Khan, Innovation & Marketing Manager at Solgeniakhela, in this SYS-CON.tv interview at @ThingsExpo, held November 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA.
Information technology is an industry that has always experienced change, and the dramatic change sweeping across the industry today could not be truthfully described as the first time we've seen such widespread change impacting customer investments. However, the rate of the change, and the potential outcomes from today's digital transformation has the distinct potential to separate the industry into two camps: Organizations that see the change coming, embrace it, and successful leverage it; and...
Bert Loomis was a visionary. This general session will highlight how Bert Loomis and people like him inspire us to build great things with small inventions. In their general session at 19th Cloud Expo, Harold Hannon, Architect at IBM Bluemix, and Michael O'Neill, Strategic Business Development at Nvidia, discussed the accelerating pace of AI development and how IBM Cloud and NVIDIA are partnering to bring AI capabilities to "every day," on-demand. They also reviewed two "free infrastructure" pr...
Financial Technology has become a topic of intense interest throughout the cloud developer and enterprise IT communities. Accordingly, attendees at the upcoming 20th Cloud Expo at the Javits Center in New York, June 6-8, 2017, will find fresh new content in a new track called FinTech.
"Dice has been around for the last 20 years. We have been helping tech professionals find new jobs and career opportunities," explained Manish Dixit, VP of Product and Engineering at Dice, in this SYS-CON.tv interview at 19th Cloud Expo, held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA.