Welcome!

Open Source Cloud Authors: Pat Romanski, Elizabeth White, Liz McMillan, Rostyslav Demush, Yeshim Deniz

Related Topics: Containers Expo Blog, Java IoT, Microservices Expo, Open Source Cloud, @CloudExpo

Containers Expo Blog: Article

Considerations for SSD Deployments

SSD is a great technology, but your best value from it will come when you deploy it most efficiently

Legacy storage architectures do not perform very efficiently in virtual computing environments. The very random, very write-intensive I/O patterns generated by virtual hosts drive storage costs up as enterprises either add spindles or look to newer storage technologies like solid state disk (SSD) to address the IOPS shortfall.

SSD costs are coming down, but they are still significantly higher than spinning disk costs. When enterprises do consider SSD, how it is used and where it is placed in the virtual infrastructure can make a big difference in how much enterprises have to spend to meet their performance requirements. It can also impose certain operational limitations that may or may not be issues in specific environments.

Some of the key considerations that need to be taken into account are SSD placement (in the host or in the SAN), high availability/failover requirements, caching vs logging architectures, and the value of preserving existing investments vs rip and replace investments that promise storage hardware specifically designed for virtual environments.

SSD Placement
There are two basic locations to place SSD, each of which offers its own pros and cons. Host-based SSD will generally offer the lowest storage latencies, particularly if the SSD is located on PCIe cards. In non-clustered environments where it is clear that IOPS and storage latencies are the key performance problems, these types of devices can be very valuable. In most cases, they will remove storage as the performance problem.

But don't necessarily expect that in your environment, these devices will deliver their rated IOPS directly to your applications. In removing storage as the bottleneck, system performance will now be determined by whatever the next bottleneck in the system is. That could be CPU, memory, operating system, or any number of other potential issues. This phenomenon is referred to as Amdahl's Law.

What you probably care about are application IOPS. Test the devices you're considering in your environment before purchase, so you know exactly the level of performance gain they will provide to you. Then you can make a more informed decision about whether or not you can cost justify them for use with your workloads. Paying for performance you can't use is like buying a Ferrari for use on America's interstate system - you may never get out of second gear.

Raw SSD technology generally can provide blazingly fast read performance. Write performance, however, varies depending on whether you are writing randomly or sequentially. The raw technical specs on many SSD devices indicate that sequential write performance may be half that of read performance, and random write performance may be half again as slow. Write latencies may also not be deterministic because of how SSD devices manage the space they are writing to. Many SSD vendors are combining software and other infrastructure around their SSD devices to address some of these issues. If you're looking at SSD, look to the software it's packaged with to make sure the SSD capacity you're buying can be used most efficiently.

Host-based SSD introduces failover limitations. If you have implemented a product like VMware HA in your environment to automatically recover failed nodes, any data sitting in a host-based SSD device that has not been written through to shared storage will not be available on recovery. This can lead to data loss on recovery - something that may or may not be an issue in your environment. Even though SSD is non-volatile storage, if the node it is sitting in is down, you can't get to it. You can get to it after that node is recovered, but the issue here is whether or not you can automatically fail over and have access to it.

Because of this issue, most host-based SSD products implement what is called a "write-through" cache, which means that they don't acknowledge writes at SSD latencies, they actually write them through to shared disk and then send the write acknowledgement back from there. Anything on shared disk can be potentially recovered by any other node in the cluster, ensuring that no committed data is unavailable on failover. But what this means is that you won't get any write performance improvements from SSD, just better read performance.

What does your workload look like in terms of read vs write percentages? Most virtual environments are very write intensive, much more so than they ever were in physical environments, and virtual desktop infrastructure (VDI) environments can be as much as 90% writes when operating in steady state mode. If write performance is your problem, host-based SSD with a write-through cache may not help very much in the big picture.

SAN-based SSD, on the other hand, can support failover without data loss, and if implemented with a write-back cache can provide write performance speedups as well. But many implementations available for use with SAN arrays are really only designed to speed up reads. Check carefully as you consider SSD to understand how it is implemented, and how well that maps to the actual performance requirements in your environment.

Caching vs Logging Architectures
Most SSD, wherever it is implemented, is used as a cache. Sizing guidelines for caches start with the cache as a percentage of the back-end storage it is front-ending. Generally the cache needs to be somewhere between 3% to 6% of the back-end storage, so larger data store capacities require larger caches. For example, 20TB of back-end data might require 1TB of SSD cache (5%).

Caches are generally just speeding up reads, but if you are working with a write-back cache, then the cache will have to be split between SSD capacity used to speed up reads and SSD capacity used to speed up writes. Everything else being equal in terms of performance requirements, write-back caches will have to be larger than write-through caches, but will provide more balanced performance gains (across both reads and writes).

Logging architectures, by definition, speed up writes, making them a good fit for write-intensive workloads like those found in virtual computing environments. Logs provide write performance gains by taking the very random workload and essentially removing the randomness from it by writing it sequentially to a log, acknowledging the writes from there, then asynchronously de-staging them to a shared storage pool. This means that the same SSD device used in a log vs used in a cache will be faster, assuming some randomness to the workload. The write performance the guest VMs see is the performance of the log device operating in sequential write mode almost all the time, and it can result in write performance improvements of up to 10x (relative to that same device operating in the random mode it would normally be operating in). And a log provides write performance improvements for all writes from all VMs all the time. (What's also interesting is that if you are getting 10x the IOPS from your current spinning disk, given Amdahl's Law, you may not even need to purchase SSD to remove storage as the performance bottleneck.)

Logs are very small (10GB or so) and are dedicated to a host, while the shared storage pool is accessible to all nodes in a cluster and primarily handles read requests. In a 20 node cluster with 20TB of shared data, you would need 200GB for the logs (10GB x 20 hosts) vs the 1TB you would need if SSD was used as a cache. Logs are much more efficient than caches for write performance improvements, resulting in lower costs.

If logs are located on SAN-based SSD, you not only get the write performance improvements, but this design fully supports node failover without data loss, a very nice differentiator from write-through cache implementations.

But what about read performance? This is where caches excel, and a write log doesn't seem to address that. That's true, and why it's important to combine a logging architecture with storage tiering. Any SSD capacity not used by the logs can be configured into a fast tier 0, which will provide the read performance improvements for any data residing in that tier. The bottom line here is that you can get better overall storage performance improvements from a "log + tiering" design than you can from a cache design while using 50% - 90% less high performance device (in this case, SSD) capacity. In our example above, if you buy a 256GB SAN-based SSD device and use it in a 20 node cluster, you'll get SSD sequential write performance for every write all the time, and have 56GB left over to put into a tier 0. Compare that to buying 1TB+ of cache capacity at SSD prices.

With single image management technology like linked clones or other similar implementations, you can lock your VM templates into this tier, and very efficiently gain read performance improvements against the shared blocks in those templates for all child VMs all the time. Single image management technology can help make the use of SSD capacity more efficient in either a cache or a log architecture, so don't overlook it as long as it is implemented in a way that does not impinge upon your storage performance.

Purpose-Built Storage Hardware
There are some interesting new array designs that leverage SSD, sometimes in combination with some of the other technologies mentioned above (log architectures, storage tiering, single image manage-ment, spinning disk). Designed specifically with the storage performance issues in virtual environments in mind, there is no doubt that these arrays can outperform legacy arrays. But for most enterprises, that may not be the operative question.

It's rare that an enterprise doesn't already have a sizable investment in storage. Many of these existing arrays support SSD, which can be deployed in a SAN-based cache or fast tier. It's much easier, and potentially much less disruptive and expensive if existing storage investments could be leveraged to address the storage performance issues in virtual environments. It's also less risky, since most of the hot new "virtual computing-aware" arrays and appliances are built by startups, not proven vendors. If there are pure software-based options to consider that support heterogeneous storage hardware and can address the storage issues common in virtual computing environments, allowing you to potentially take advantage of SSD capacity that fits into your current arrays, this could be a simpler, more cost-effective, and less risky option than buying from a storage startup. But only, of course, if it adequately resolves your performance problem.

The Take-Away
If there's one point you should take away from this article, it's that just blindly throwing SSD at a storage performance problem in virtual computing environments is not going to be a very efficient or cost-effective way to address your particular issues. Consider how much more performance you need, whether you need it on reads, writes, or both, whether you need to failover without data loss, and whether preserving existing storage hardware investments is important to you. SSD is a great technology, but your best value from it will come when you deploy it most efficiently.

More Stories By Eric Burgener

Eric Burgener is vice president product management at Virsto Software. He has worked on emerging technologies for almost his entire career, with early stints at pioneering companies such as Tandem, Pyramid, Sun, Veritas, ConvergeNet, Mendocino, and Topio, among others, on fault tolerance and high availability, replication, backup, continuous data protection, and server virtualization technologies.

Over the last 25 years Eric has worked across a variety of functional areas, including sales, product management, marketing, business development, and technical support, and also spent time as an Executive in Residence with Mayfield and a storage industry analyst at Taneja Group. Before joining Virsto, he was VP of Marketing at InMage.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@ThingsExpo Stories
Everything run by electricity will eventually be connected to the Internet. Get ahead of the Internet of Things revolution. In his session at @ThingsExpo, Akvelon expert and IoT industry leader Sergey Grebnov provided an educational dive into the world of managing your home, workplace and all the devices they contain with the power of machine-based AI and intelligent Bot services for a completely streamlined experience.
It is of utmost importance for the future success of WebRTC to ensure that interoperability is operational between web browsers and any WebRTC-compliant client. To be guaranteed as operational and effective, interoperability must be tested extensively by establishing WebRTC data and media connections between different web browsers running on different devices and operating systems. In his session at WebRTC Summit at @ThingsExpo, Dr. Alex Gouaillard, CEO and Founder of CoSMo Software, presented ...
DXWorldEXPO LLC, the producer of the world's most influential technology conferences and trade shows has announced the 22nd International CloudEXPO | DXWorldEXPO "Early Bird Registration" is now open. Register for Full Conference "Gold Pass" ▸ Here (Expo Hall ▸ Here)
Amazon started as an online bookseller 20 years ago. Since then, it has evolved into a technology juggernaut that has disrupted multiple markets and industries and touches many aspects of our lives. It is a relentless technology and business model innovator driving disruption throughout numerous ecosystems. Amazon’s AWS revenues alone are approaching $16B a year making it one of the largest IT companies in the world. With dominant offerings in Cloud, IoT, eCommerce, Big Data, AI, Digital Assista...
Recently, REAN Cloud built a digital concierge for a North Carolina hospital that had observed that most patient call button questions were repetitive. In addition, the paper-based process used to measure patient health metrics was laborious, not in real-time and sometimes error-prone. In their session at 21st Cloud Expo, Sean Finnerty, Executive Director, Practice Lead, Health Care & Life Science at REAN Cloud, and Dr. S.P.T. Krishnan, Principal Architect at REAN Cloud, discussed how they built...
As ridesharing competitors and enhanced services increase, notable changes are occurring in the transportation model. Despite the cost-effective means and flexibility of ridesharing, both drivers and users will need to be aware of the connected environment and how it will impact the ridesharing experience. In his session at @ThingsExpo, Timothy Evavold, Executive Director Automotive at Covisint, discussed key challenges and solutions to powering a ride sharing and/or multimodal model in the age ...
When shopping for a new data processing platform for IoT solutions, many development teams want to be able to test-drive options before making a choice. Yet when evaluating an IoT solution, it’s simply not feasible to do so at scale with physical devices. Building a sensor simulator is the next best choice; however, generating a realistic simulation at very high TPS with ease of configurability is a formidable challenge. When dealing with multiple application or transport protocols, you would be...
Detecting internal user threats in the Big Data eco-system is challenging and cumbersome. Many organizations monitor internal usage of the Big Data eco-system using a set of alerts. This is not a scalable process given the increase in the number of alerts with the accelerating growth in data volume and user base. Organizations are increasingly leveraging machine learning to monitor only those data elements that are sensitive and critical, autonomously establish monitoring policies, and to detect...
Data is the fuel that drives the machine learning algorithmic engines and ultimately provides the business value. In his session at Cloud Expo, Ed Featherston, a director and senior enterprise architect at Collaborative Consulting, discussed the key considerations around quality, volume, timeliness, and pedigree that must be dealt with in order to properly fuel that engine.
In his session at @ThingsExpo, Dr. Robert Cohen, an economist and senior fellow at the Economic Strategy Institute, presented the findings of a series of six detailed case studies of how large corporations are implementing IoT. The session explored how IoT has improved their economic performance, had major impacts on business models and resulted in impressive ROIs. The companies covered span manufacturing and services firms. He also explored servicification, how manufacturing firms shift from se...
IoT solutions exploit operational data generated by Internet-connected smart “things” for the purpose of gaining operational insight and producing “better outcomes” (for example, create new business models, eliminate unscheduled maintenance, etc.). The explosive proliferation of IoT solutions will result in an exponential growth in the volume of IoT data, precipitating significant Information Governance issues: who owns the IoT data, what are the rights/duties of IoT solutions adopters towards t...
In his keynote at 18th Cloud Expo, Andrew Keys, Co-Founder of ConsenSys Enterprise, provided an overview of the evolution of the Internet and the Database and the future of their combination – the Blockchain. Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life settl...
With tough new regulations coming to Europe on data privacy in May 2018, Calligo will explain why in reality the effect is global and transforms how you consider critical data. EU GDPR fundamentally rewrites the rules for cloud, Big Data and IoT. In his session at 21st Cloud Expo, Adam Ryan, Vice President and General Manager EMEA at Calligo, examined the regulations and provided insight on how it affects technology, challenges the established rules and will usher in new levels of diligence arou...
Organizations planning enterprise data center consolidation and modernization projects are faced with a challenging, costly reality. Requirements to deploy modern, cloud-native applications simultaneously with traditional client/server applications are almost impossible to achieve with hardware-centric enterprise infrastructure. Compute and network infrastructure are fast moving down a software-defined path, but storage has been a laggard. Until now.
Digital Transformation is much more than a buzzword. The radical shift to digital mechanisms for almost every process is evident across all industries and verticals. This is often especially true in financial services, where the legacy environment is many times unable to keep up with the rapidly shifting demands of the consumer. The constant pressure to provide complete, omnichannel delivery of customer-facing solutions to meet both regulatory and customer demands is putting enormous pressure on...
Dion Hinchcliffe is an internationally recognized digital expert, bestselling book author, frequent keynote speaker, analyst, futurist, and transformation expert based in Washington, DC. He is currently Chief Strategy Officer at the industry-leading digital strategy and online community solutions firm, 7Summits.
IoT is at the core or many Digital Transformation initiatives with the goal of re-inventing a company's business model. We all agree that collecting relevant IoT data will result in massive amounts of data needing to be stored. However, with the rapid development of IoT devices and ongoing business model transformation, we are not able to predict the volume and growth of IoT data. And with the lack of IoT history, traditional methods of IT and infrastructure planning based on the past do not app...
"Akvelon is a software development company and we also provide consultancy services to folks who are looking to scale or accelerate their engineering roadmaps," explained Jeremiah Mothersell, Marketing Manager at Akvelon, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
More and more brands have jumped on the IoT bandwagon. We have an excess of wearables – activity trackers, smartwatches, smart glasses and sneakers, and more that track seemingly endless datapoints. However, most consumers have no idea what “IoT” means. Creating more wearables that track data shouldn't be the aim of brands; delivering meaningful, tangible relevance to their users should be. We're in a period in which the IoT pendulum is still swinging. Initially, it swung toward "smart for smart...
IoT is rapidly becoming mainstream as more and more investments are made into the platforms and technology. As this movement continues to expand and gain momentum it creates a massive wall of noise that can be difficult to sift through. Unfortunately, this inevitably makes IoT less approachable for people to get started with and can hamper efforts to integrate this key technology into your own portfolio. There are so many connected products already in place today with many hundreds more on the h...