Welcome!

Open Source Cloud Authors: Zakia Bouachraoui, Yeshim Deniz, Elizabeth White, Pat Romanski, Liz McMillan

Related Topics: Java IoT, Microservices Expo, Open Source Cloud, Machine Learning , Release Management , Python

Java IoT: Article

Profiling Python Performance Using lineprof, statprof, and cProfile

Let’s look at profiling in Python

If you’re a regular here, you know how much we care about the full-stack view of applications. Today, let’s zoom in a bit, and talk about the performance of a single layer. In particular, let’s look at profiling in Python.

As an example, let’s take this bit of code for calculating confidence intervals of the mean of a set of data. If you’re not familiar with confidence intervals, they provide a set of bounds for a given statistic; a 95% interval implies that the true mean lies in the calculated range 95% of the time. One way of calculating this involves generating a number of new data sets from the data you have (random selection, with replacement), and looking at that (meta?-)data set. In practice, you typically run this a couple of times, look at the results, and see if they’re converging. If not, you keep running until they do converge, or you hit some max number of iterations.

It turns out, doing 1000 iterations of a reasonable data set size (say, 100k points) is a reasonably expensive operation — about 2 seconds (ish) on my laptop. That’s not too bad in isolation, but run every 15 minutes, on a variety of data sizes up to 1 million, over all customers here at AppNeta? We can do much better.

Since this is Python, let’s see if there’s an obvious way to do it. As it turns out, there is: the standard library module cProfile. This is Python’s flexible, deterministic, C-implemented profiler. (There’s also profile, a pure-python version, but unless you have good cause to avoid C extensions, cProfile is probably a better bet.) cProfile will give us a list of all function calls, sorted however we want. Let’s run it, and dump the result to a file:

ProfilePython-1

There’s a few important things to take note of in these results. The first thing to notice is that 3 of the top 4 functions are in the random module. We only use the random module twice in our example, and the initial use (generating the data set) is a constant 100,000 calls. That leaves 4 million calls from the inner loop of confidence_interval. Since that’s a core part of the algorithm, I wonder if there’s a better way to do that?

For a start, let’s try using a different random number generator. As a rule, if you have a slow function in python, and numpy has a replacement function, the numpy version will be faster. Let’s replace random with numpy.random, and try again:

ProfilePython-2

Much better! Unfortunately, now we have a different problem. Instead of a single line or function call, we only know our problem exists inside a function.

One way to drill down on this is to use statprof. This is a different type of profiler: instead of instrumenting each function call, statprof wakes up at pre-defined intervals and records a stack trace, including line number. Let’s run that:

ProfilePython-3

Cool! Looking back at the code, lines 44 and 45 are the selection and array creation:

ProfilePython-4

Interestingly, the absolute time reported by statprof is a bit lower than cProfile. That difference is due to the statistical nature of statprof. Even at the default setting of 1ms samples, it simply has to do less work than cProfile, who has to instrument all 4 million calls to the various parts of random. It’s worth remembering this difference in overhead, as some code will exihibit different behavior as the timing changes.

In any case, can we do better? It’s possible that the time here is no longer being spent on calculations, but instead on simply creating intermediate arrays. Let’s combine those lines, and re-run:

ProfilePython-5

That certainly seems better: 1.92s vs 2.39s (1.54 + 0.85) from above. At this point, though, be careful. Up until now, we’ve avoided directly comparing profiling runs. Looking at the percentage of time spent, we’re actually at about the same place (85% of total); this run just completed faster than the last run. This is a common pattern — as the low-hanging fruit is picked off, it becomes more and more important to validate smaller gains in more formal ways. How, exactly, to collect those stats is a topic for another post.

It’s also worth mentioning Robert Kern’s line_profiler. It’s a deterministic profiler (like cProfile), but it captures profiling data on a line-by-line basis. It also allows selectively profiling specific functions, which can be invaluable on a larger codebase, to weed out the noise from other modules. Unfortunately, because it does capture every line call you ask it to, the overhead of instrumenting every line you run can be substantial (4x slowdown on my laptop). For completeness, here’s what it looks like on our sample:

ProfilePython-6

Finally, remember that profiling is just one component of a performance toolkit. Most performance problems aren’t complex; they’re just well-hidden. Before writing the above code, I hadn’t realized how expensive random number generation could be. Simply taking the time to look for a faster function saved over 90% of the time spent.

Make it work, then make it pretty, then make it fast. And with the right tools, it doesn’t even take that long.

And if you want to find other ways to optimize your code and make it fast, start using TraceView for free - sign up here.

Related Articles

Python and gevent

Tracing Celery Performance For Web Applications

Tracing Python — An API

More Stories By TR Jordan

A veteran of MIT’s Lincoln Labs, TR is a reformed physicist and full-stack hacker – for some limited definition of full stack. After a few years as Software Development Lead with Thermopylae Science and Techology, he left to join Tracelytics as its first engineer. Following Tracelytics merger with AppNeta, TR was tapped to run all of its developer and market evangelism efforts. TR still harbors a not-so-secret love for Matlab-esque graphs and half-baked statistics, as well as elegant and highly-performant code. Read more of his articles at www.appneta.com/blog or visit www.appneta.com.

IoT & Smart Cities Stories
Bill Schmarzo, Tech Chair of "Big Data | Analytics" of upcoming CloudEXPO | DXWorldEXPO New York (November 12-13, 2018, New York City) today announced the outline and schedule of the track. "The track has been designed in experience/degree order," said Schmarzo. "So, that folks who attend the entire track can leave the conference with some of the skills necessary to get their work done when they get back to their offices. It actually ties back to some work that I'm doing at the University of San...
In his general session at 19th Cloud Expo, Manish Dixit, VP of Product and Engineering at Dice, discussed how Dice leverages data insights and tools to help both tech professionals and recruiters better understand how skills relate to each other and which skills are in high demand using interactive visualizations and salary indicator tools to maximize earning potential. Manish Dixit is VP of Product and Engineering at Dice. As the leader of the Product, Engineering and Data Sciences team at D...
When talking IoT we often focus on the devices, the sensors, the hardware itself. The new smart appliances, the new smart or self-driving cars (which are amalgamations of many ‘things'). When we are looking at the world of IoT, we should take a step back, look at the big picture. What value are these devices providing. IoT is not about the devices, its about the data consumed and generated. The devices are tools, mechanisms, conduits. This paper discusses the considerations when dealing with the...
Bill Schmarzo, author of "Big Data: Understanding How Data Powers Big Business" and "Big Data MBA: Driving Business Strategies with Data Science," is responsible for setting the strategy and defining the Big Data service offerings and capabilities for EMC Global Services Big Data Practice. As the CTO for the Big Data Practice, he is responsible for working with organizations to help them identify where and how to start their big data journeys. He's written several white papers, is an avid blogge...
Dynatrace is an application performance management software company with products for the information technology departments and digital business owners of medium and large businesses. Building the Future of Monitoring with Artificial Intelligence. Today we can collect lots and lots of performance data. We build beautiful dashboards and even have fancy query languages to access and transform the data. Still performance data is a secret language only a couple of people understand. The more busine...
If a machine can invent, does this mean the end of the patent system as we know it? The patent system, both in the US and Europe, allows companies to protect their inventions and helps foster innovation. However, Artificial Intelligence (AI) could be set to disrupt the patent system as we know it. This talk will examine how AI may change the patent landscape in the years to come. Furthermore, ways in which companies can best protect their AI related inventions will be examined from both a US and...
Enterprises have taken advantage of IoT to achieve important revenue and cost advantages. What is less apparent is how incumbent enterprises operating at scale have, following success with IoT, built analytic, operations management and software development capabilities - ranging from autonomous vehicles to manageable robotics installations. They have embraced these capabilities as if they were Silicon Valley startups.
Chris Matthieu is the President & CEO of Computes, inc. He brings 30 years of experience in development and launches of disruptive technologies to create new market opportunities as well as enhance enterprise product portfolios with emerging technologies. His most recent venture was Octoblu, a cross-protocol Internet of Things (IoT) mesh network platform, acquired by Citrix. Prior to co-founding Octoblu, Chris was founder of Nodester, an open-source Node.JS PaaS which was acquired by AppFog and ...
The deluge of IoT sensor data collected from connected devices and the powerful AI required to make that data actionable are giving rise to a hybrid ecosystem in which cloud, on-prem and edge processes become interweaved. Attendees will learn how emerging composable infrastructure solutions deliver the adaptive architecture needed to manage this new data reality. Machine learning algorithms can better anticipate data storms and automate resources to support surges, including fully scalable GPU-c...
Cloud-enabled transformation has evolved from cost saving measure to business innovation strategy -- one that combines the cloud with cognitive capabilities to drive market disruption. Learn how you can achieve the insight and agility you need to gain a competitive advantage. Industry-acclaimed CTO and cloud expert, Shankar Kalyana presents. Only the most exceptional IBMers are appointed with the rare distinction of IBM Fellow, the highest technical honor in the company. Shankar has also receive...