Welcome!

Open Source Authors: Ignacio M. Llorente, Carmen Gonzalez, Michael Meiner, Liz McMillan, Amy Lindberg

Related Topics: Open Source, Java, XML, SOA & WOA, .NET, AJAX & REA

Open Source: Article

Abstractness vs Instability: A Neo4j Case Study

Discover Abstractness vs Instability graph

Robert C.Martin wrote an interesting article about a set of metrics that can be used to measure the quality of an object-oriented design in terms of the interdependence between the subsystems of that design.

Here's from the article what he said about the interdependence between modules:

What is it that makes a design rigid, fragile and difficult to reuse. It is the interdependence of the subsystems within that design. A design is rigid if it cannot be easily changed. Such rigidity is due to the fact that a single change to heavily interdependent software begins a cascade of changes in dependent modules. When the extent of that cascade of change cannot be predicted by the designers or maintainers the impact of the change cannot be estimated. This makes the cost of the change impossible to estimate. Managers, faced with such unpredictability, become reluctant to authorize changes. Thus the design becomes rigid.

And to fight the rigidity he introduce metrics like Afferent coupling, Efferent coupling, Abstractness and Instability.

Let's discover all these metrics and how they could be very useful to improve the design of applications. For that let's analyze Neo4j by JArchitect.

Neo4j is a robust transactional property graph database. Due to its graph data model, Neo4j is highly agile and blazing fast. For connected data operations, Neo4j runs a thousand times faster than relational databases.

And here's the dependency graph between all Neo4j jars

neo4j1

Neo4j contains many jars and all of them depend on neo4j-kernel, and to have more details about the weight of using each jar, The DSM (Dependency Structure Matrix) is a compact way to represent and navigate across dependencies between components.

neo4j6

As the matrix shows the neo4j kernel is heavily used by the other jars.

Afferent Coupling:
The number of types outside this project that depend on types within this project.

Let's execute the following CQLinq query to get the afferent coupling of Neo4j jars:

from p in Projects where !p.IsThirdParty select new { p,p.NbTypesUsingMe }

neo4j2

As discovered before the kernel is the more solicited by the other jars.

Efferent Coupling
The number of types outside this project used by types of this project.

from p in Projects where !p.IsThirdParty select new { p,p.NbTypesUsed }

neo4j3

The efferent coupling and afferent coupling could be applied also on packages and types. For example the efferent coupling for a particular type is the number of types it directly depends on. Types where TypeCe is very high are types that depend on too many other types. They are complex and in general have more than one responsibility.

Abstractness
The ratio of the number of internal abstract types (i.e abstract classes and interfaces) to the number of internal types. The range for this metric is 0 to 1, with A=0 indicating a completely concrete project and A=1 indicating a completely abstract project

A = Na / Nc

Where:

A = abstractness of a module
Zero is a completely concrete module. One is a completely abstract module.
Na = number of abstract classes in the module.
Nc = number of concrete classes in the module.

Let's take as example the neo4j-kernel-1.8.2 jar and search for all abstract types.

from t in Types where t.IsAbstract || t.IsInterface select new { t, t.NbLinesOfCode }

neo4j4

neo4j-kernel-1.8.2 has 1071 types so the Abstractness is equal to 233/1071 = 0.21755

To increase the abstractness of a project we have to add more abstract classes or interfaces.

Instability
The ratio of efferent coupling (Ce) to total coupling. I = Ce / (Ce + Ca). This metric is an indicator of the project's resilience to change. The range for this metric is 0 to 1, with I=0 indicating a completely stable project and I=1 indicating a completely instable project.

I = Ce/(Ce + Ca)
I represent the degree of instability associated with a project.
Ca represents the afferent coupling, or incoming dependencies, and
Ce represents the efferent coupling, or outgoing dependencies

Let's take as example a class where many other classes used it and it not use any other class. In this case this class is considered as stable for the following reasons:

- This kind of class depends upon nothing at all, so a change from a depended cannot ripple up to it and cause it to change. This characteristic is called “Independence”. Independent classes are classes which do not depend upon anything else.

- It's depended upon by many other classes. It became harder to make changes to it. And if we were to change it we would have to change all the other classes that depended upon it. Thus, there is a great deal of force preventing us from changing these classes, and enhancing their stability.

Classes that are heavily depended upon are called “Responsible”. Responsible classes tend to be stable because any change has a large impact.

Let's search for the more responsible types by executing the following CQLinq query

(from t in Types orderby t.NbTypesUsingMe descending, t.NbTypesUsed descending, t.NbBCInstructions descending select new { t, t.NbTypesUsingMe,t.NbTypesUsed})

neo4j5

The Expression class is the most popular one.

Abstractness vs Instability Graph and the zone of pain

To have more details about this graph you can refer to the Robert C.Martin article.

Here's the graph for Neo4j framework

AbstractnessVSInstability

The idea behind this graph is that the more a code element of a program is popular, the more it should be abstract. Or in other words, avoid depending too much directly on implementations, depend on abstractions instead. By popular code element I mean a project (but the idea works also for packages and types) that is massively used by other projects of the program. It is not a good idea to have concrete types very popular in your code base. This provokes some Zones of Pains in your program, where changing the implementations can potentially affect a large portion of the program. And implementations are known to evolve more often than abstractions.

The main sequence line (dotted) in the above diagram shows the how abstractness and instability should be balanced. A stable component would be positioned on the left. If you check the main sequence you can see that such a component should be very abstract to be near the desirable line - on the other hand, if its degree of abstraction is low, it is positioned in an area that is called the "zone of pain".

For example neo4j kernel has many classes depending on it, so it's positioned on the left and in this case it's preferable to be more abstract to leave the orange zone and goes to the green zone.

What's important is to avoid the zone of pain, if a jar is inside this zone, any changes to it will impact a lot of classes and it became hard to maintain or evolve this module.

More Stories By Lahlali Issam

Lahlali Issam Lead Developer at JavaDepend, a tool to manage and understand complex Java code. With JavaDepend, software quality can be measured using Code Metrics, visualized using Graphs and Treemaps, and queried using CQL language, a SQL like to query the code base.

@ThingsExpo Stories
How do APIs and IoT relate? The answer is not as simple as merely adding an API on top of a dumb device, but rather about understanding the architectural patterns for implementing an IoT fabric. There are typically two or three trends: Exposing the device to a management framework Exposing that management framework to a business centric logic Exposing that business layer and data to end users. This last trend is the IoT stack, which involves a new shift in the separation of what stuff happens, where data lives and where the interface lies. For instance, it's a mix of architectural styles ...
Connected devices and the Internet of Things are getting significant momentum in 2014. In his session at Internet of @ThingsExpo, Jim Hunter, Chief Scientist & Technology Evangelist at Greenwave Systems, examined three key elements that together will drive mass adoption of the IoT before the end of 2015. The first element is the recent advent of robust open source protocols (like AllJoyn and WebRTC) that facilitate M2M communication. The second is broad availability of flexible, cost-effective storage designed to handle the massive surge in back-end data in a world where timely analytics is e...
The Internet of Things will put IT to its ultimate test by creating infinite new opportunities to digitize products and services, generate and analyze new data to improve customer satisfaction, and discover new ways to gain a competitive advantage across nearly every industry. In order to help corporate business units to capitalize on the rapidly evolving IoT opportunities, IT must stand up to a new set of challenges. In his session at @ThingsExpo, Jeff Kaplan, Managing Director of THINKstrategies, will examine why IT must finally fulfill its role in support of its SBUs or face a new round of...
We are reaching the end of the beginning with WebRTC, and real systems using this technology have begun to appear. One challenge that faces every WebRTC deployment (in some form or another) is identity management. For example, if you have an existing service – possibly built on a variety of different PaaS/SaaS offerings – and you want to add real-time communications you are faced with a challenge relating to user management, authentication, authorization, and validation. Service providers will want to use their existing identities, but these will have credentials already that are (hopefully) i...
Cultural, regulatory, environmental, political and economic (CREPE) conditions over the past decade are creating cross-industry solution spaces that require processes and technologies from both the Internet of Things (IoT), and Data Management and Analytics (DMA). These solution spaces are evolving into Sensor Analytics Ecosystems (SAE) that represent significant new opportunities for organizations of all types. Public Utilities throughout the world, providing electricity, natural gas and water, are pursuing SmartGrid initiatives that represent one of the more mature examples of SAE. We have s...
"Matrix is an ambitious open standard and implementation that's set up to break down the fragmentation problems that exist in IP messaging and VoIP communication," explained John Woolf, Technical Evangelist at Matrix, in this SYS-CON.tv interview at @ThingsExpo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
The Internet of Things will greatly expand the opportunities for data collection and new business models driven off of that data. In her session at @ThingsExpo, Esmeralda Swartz, CMO of MetraTech, discussed how for this to be effective you not only need to have infrastructure and operational models capable of utilizing this new phenomenon, but increasingly service providers will need to convince a skeptical public to participate. Get ready to show them the money!
One of the biggest challenges when developing connected devices is identifying user value and delivering it through successful user experiences. In his session at Internet of @ThingsExpo, Mike Kuniavsky, Principal Scientist, Innovation Services at PARC, described an IoT-specific approach to user experience design that combines approaches from interaction design, industrial design and service design to create experiences that go beyond simple connected gadgets to create lasting, multi-device experiences grounded in people's real needs and desires.
P2P RTC will impact the landscape of communications, shifting from traditional telephony style communications models to OTT (Over-The-Top) cloud assisted & PaaS (Platform as a Service) communication services. The P2P shift will impact many areas of our lives, from mobile communication, human interactive web services, RTC and telephony infrastructure, user federation, security and privacy implications, business costs, and scalability. In his session at @ThingsExpo, Robin Raymond, Chief Architect at Hookflash, will walk through the shifting landscape of traditional telephone and voice services ...
Scott Jenson leads a project called The Physical Web within the Chrome team at Google. Project members are working to take the scalability and openness of the web and use it to talk to the exponentially exploding range of smart devices. Nearly every company today working on the IoT comes up with the same basic solution: use my server and you'll be fine. But if we really believe there will be trillions of these devices, that just can't scale. We need a system that is open a scalable and by using the URL as a basic building block, we open this up and get the same resilience that the web enjoys.
The Internet of Things is tied together with a thin strand that is known as time. Coincidentally, at the core of nearly all data analytics is a timestamp. When working with time series data there are a few core principles that everyone should consider, especially across datasets where time is the common boundary. In his session at Internet of @ThingsExpo, Jim Scott, Director of Enterprise Strategy & Architecture at MapR Technologies, discussed single-value, geo-spatial, and log time series data. By focusing on enterprise applications and the data center, he will use OpenTSDB as an example t...
The Domain Name Service (DNS) is one of the most important components in networking infrastructure, enabling users and services to access applications by translating URLs (names) into IP addresses (numbers). Because every icon and URL and all embedded content on a website requires a DNS lookup loading complex sites necessitates hundreds of DNS queries. In addition, as more internet-enabled ‘Things' get connected, people will rely on DNS to name and find their fridges, toasters and toilets. According to a recent IDG Research Services Survey this rate of traffic will only grow. What's driving t...
Enthusiasm for the Internet of Things has reached an all-time high. In 2013 alone, venture capitalists spent more than $1 billion dollars investing in the IoT space. With "smart" appliances and devices, IoT covers wearable smart devices, cloud services to hardware companies. Nest, a Google company, detects temperatures inside homes and automatically adjusts it by tracking its user's habit. These technologies are quickly developing and with it come challenges such as bridging infrastructure gaps, abiding by privacy concerns and making the concept a reality. These challenges can't be addressed w...
Explosive growth in connected devices. Enormous amounts of data for collection and analysis. Critical use of data for split-second decision making and actionable information. All three are factors in making the Internet of Things a reality. Yet, any one factor would have an IT organization pondering its infrastructure strategy. How should your organization enhance its IT framework to enable an Internet of Things implementation? In his session at Internet of @ThingsExpo, James Kirkland, Chief Architect for the Internet of Things and Intelligent Systems at Red Hat, described how to revolutioniz...
Bit6 today issued a challenge to the technology community implementing Web Real Time Communication (WebRTC). To leap beyond WebRTC’s significant limitations and fully leverage its underlying value to accelerate innovation, application developers need to consider the entire communications ecosystem.
The definition of IoT is not new, in fact it’s been around for over a decade. What has changed is the public's awareness that the technology we use on a daily basis has caught up on the vision of an always on, always connected world. If you look into the details of what comprises the IoT, you’ll see that it includes everything from cloud computing, Big Data analytics, “Things,” Web communication, applications, network, storage, etc. It is essentially including everything connected online from hardware to software, or as we like to say, it’s an Internet of many different things. The difference ...
Cloud Expo 2014 TV commercials will feature @ThingsExpo, which was launched in June, 2014 at New York City's Javits Center as the largest 'Internet of Things' event in the world.
SYS-CON Events announced today that Windstream, a leading provider of advanced network and cloud communications, has been named “Silver Sponsor” of SYS-CON's 16th International Cloud Expo®, which will take place on June 9–11, 2015, at the Javits Center in New York, NY. Windstream (Nasdaq: WIN), a FORTUNE 500 and S&P 500 company, is a leading provider of advanced network communications, including cloud computing and managed services, to businesses nationwide. The company also offers broadband, phone and digital TV services to consumers primarily in rural areas.
"There is a natural synchronization between the business models, the IoT is there to support ,” explained Brendan O'Brien, Co-founder and Chief Architect of Aria Systems, in this SYS-CON.tv interview at the 15th International Cloud Expo®, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
The major cloud platforms defy a simple, side-by-side analysis. Each of the major IaaS public-cloud platforms offers their own unique strengths and functionality. Options for on-site private cloud are diverse as well, and must be designed and deployed while taking existing legacy architecture and infrastructure into account. Then the reality is that most enterprises are embarking on a hybrid cloud strategy and programs. In this Power Panel at 15th Cloud Expo (http://www.CloudComputingExpo.com), moderated by Ashar Baig, Research Director, Cloud, at Gigaom Research, Nate Gordon, Director of T...