Welcome!

Open Source Cloud Authors: William Schmarzo, Liz McMillan, Stackify Blog, Vaibhaw Pandey, Pat Romanski

Related Topics: @CloudExpo, Java IoT, Microservices Expo, Open Source Cloud, Apache, @DXWorldExpo

@CloudExpo: Blog Post

Hadoop – 100x Faster By @GridGain | @CloudExpo [#BigData]

How we did it...

If you know anything about Hadoop architecture - the task seemed daunting to us and it proved to be one of the most challenging engineering feat that we have accomplished so far.

After almost 24 months of development, tens of thousands of lines of Java, Scala and C++ code, multiple design iterations, several releases and dozens of benchmarks later we have the product that can deliver real-time performance to Hadoop with only minimal integration and no ETL required. Backed-up by customer deployments that prove our performance claims and validate our architecture.

Here's how we did it.

The Idea - In-Memory Hadoop Accelerator
Hadoop is based on two key technologies: HDFS for storing data, and MapReduce for processing that data in parallel. Everything else in Hadoop itself and the entire ecosystem coalesce around these two technologies.

Both - HDFS and MapReduce - were not necessarily designed with real-time performance in mind and in order to deliver real-time processing without moving data out of Hadoop into an alternative technology, we had to improve the performance of each of these sub-systems directly.

in_memory_hadoop2_white

We decided to develop a high performance in-memory file system that provides 100% compatibility with HDFS and an optimized MapReduce implementation that would take advantage of this real-time file system. By doing so, we could offer all of the advantages of our in-memory platform while minimizing the disruption of our customers' existing Hadoop investments.

There are many projects and products that aim to improve Hadoop performance. Projects like HDFS2, Apache Tez, Cloudera Impala, HortonWorks Stinger, ScaleOut hServer and Apache Spark to name but a few, all aim to solve Hadoop performance issues in various ways.

From a technology stand point GridGain's In-Memory Hadoop Accelerator has some similarity to the architecture of Spark (optimized MapReduce), ScaleOut and HDFS2 (in-memory caching without ETL) and some features of Apache Tez (in-process execution), however, GridGain's In-Memory Accelerator is the only product for Hadoop available today that combines the both the high performance HDFS-compatible file system and optimized in-memory MapReduce along with many other features in one fully integrated product.

In-Memory File System
First, we implemented GridGain's In-Memory File System (GGFS) to accelerate I/O in the Hadoop stack. The original idea was that GGFS alone will be enough to gain significant performance increase. However, while we saw significant performance gains using GGFS, when working with our customers we quickly found that there were some not so obvious performance limitations to the way in which Hadoop performs MapReduce. It quickly became clear to us that GGFS alone won't be enough but it was a critical piece that we needed to build first.

Note that you shouldn't confuse GGFS with much slower alternatives like RAM disk. GGFS is based on our Memory-First architecture and addresses more than just the seek time of the "device".

From the get go we designed GGFS to support both Hadoop v1 and YARN Hadoop v2. Further, we designed GGFS to work in two modes:

  • Primary (standalone), and
  • Secondary (caching HDFS).

In primary standalone mode GGFS acts as a bona-fide Hadoop file system that is PnP compatible with the standard HDFS interface. Our customers use it to deploy a high-performance in-memory Hadoop cluster and use it as any other Hadoop file system - albeit one that trades capacity for maximum performance.

One of the great added benefits of the primary mode is that it does away with NamedNode in the Hadoop deployment. Unlike a standard Hadoop deployment that requires shared storage for primary and secondary NameNodes which is usually implemented with a complex NFS setup mounted on each NameNode machine, GGFS seamlessly utilizes GridGain's In-Memory Database under the hood to provide completely automatic scaling and failover without any need for additional shared storage or risky Single Point Of Failure (SPOF) architectures.

Furthermore, unlike Hadoop's master-slave design for NamedNodes that prevents it from linear runtime scaling when adding new nodes, GGFS is built on a highly scalable, natively distributed partitioned data store that provides linear scalability and auto-discovery of new nodes. Removing NamedNode form the picture and all its chattiness enabled dramatically better performance for IO operations.

GGFS primary mode provides maximum performance for IO operations but will require moving data from disk-based HDFS to in-memory based GGFS (i.e. from one file system to another). While data movement may be appropriate for some use cases, we have a second mode, in which absolutely no ETL is required.

In the second mode, GGFS works as an intelligent secondary in-memory distributed cache over the primary disk-based HDFS file system. In this mode GGFS supports bothsynchronous and asynchronous read-through and write-through to and from HDFS providing either strong consistency or better performance in exchange for relaxed consistency with absolute transparency to the user and applications running on top of it. In this mode users can manually select which set of files and/or directories should be stored in GGFS and what mode - synchronous or asynchronous - should be used for each one of them for read-through and write-through to and from HDFS.

Another interesting feature of GGFS is its smart usage of block-level or file-level caching and eviction design. When working in primary mode GGFS utilizes file level caching to ensure corruption free storage (the file is either fully in GGFS or not at all). When in secondary mode, GridGain will automatically switch to block-level caching and eviction. What we discovered when working with our customers on real-world Hadoop payloads is that files on HDFS are often accessed not uniformly, i.e. they have significant "locality" in how portions of the file is being accessed. Put another way, certain blocks of a file are accessed more frequently than others. That observation led to our block-level caching implementation for the secondary mode that enables dramatically better memory utilization since GGFS can store only the most frequently used file blocks in memory - and not entire files which can easily measure in 100GBs in Hadoop.

No good caching can work effectively without equally sophisticated eviction management to make sure that memory is optimally utilized - and we've built a very neat one too. Apart from obvious eviction features you can configure certain files to never be evicted preserving them in memory in all cases for maximum performance.

To ensure seamless and continuous performance during MapReduce file scanning, we've implemented smart data prefetching via streaming data that is expected to be read in the nearest future to the MapReduce task ahead of time. By doing so, GGFS ensures that whenever a MapReduce task finishes reading a file block, the next file block is already available in memory. A significant performance boost was achieved here due to ourproprietary Inter-Process Communication (IPC) implementation which allows GGFS to achieve throughput of up to 30Gbit/s between two processes.

The table below shows GGFS vs. HDFS (on Flash-based SSDs) benchmark results for raw IO operations:

BenchmarkGGFS, ms.HDFS, ms.Boost, %
File Scan 27 667 2470%
File Create 96 961 1001%
File Random Access 413 2931 710%
File Delete 185 1234 667%

The above tests were performed on a 10-node cluster of Dell R610 blades with Dual 8-core CPUs, running Ubuntu 12.4 OS, 10GBE network fabric and stock unmodified Apache Hadoop 2.x distribution.

As you can see from these results the IO performance difference is quite significant. However, HDFS performance is only part of the total Hadoop overhead. Another part is MapReduce overhead and that's what we address with In-Memory MapReduce.

In-Memory MapReduce
Once we had our high performance in-memory file system built and tested, we turned our attention to a MapReduce implementation that would take advantage of in-memory technology.

Hadoop's MapReduce design is one of the weakest points in Hadoop. It's basically a inefficiently designed system when it comes to distributed processing. GridGain In-Memory MapReduce implementation relies heavily on 7 years of experience developing our widely deployed In-Memory HPC product. GridGain's In-Memory MapReduce is designed on record-based approach vs. key-value approach of traditional MapReduce, and it enables much more streamlined parallel execution path on data stored in in-memory file system.

Furthermore, In-Memory MapReduce eliminates the standard overhead associated with the typical Hadoop job tracker polling, task tracker process creation, deployment and provisioning. All in all - GridGain's In-Memory MapReduce is a highly optimized HPC-based implementation of the MapReduce concept enabling true low-latency data processing of data stored in GGFS.

The diagram below demonstrates the difference between a standard Hadoop MapReduce execution path and GridGain's In-Memory MapReduce execution path:

gg_hadoop_mapred_800

As seen in this diagram our MapReduce implementation supports direct execution path from client to data node. Moreover, all execution in GridGain happens in-process with deployment handled automatically and transparently by GridGain.

In-Memory MapReduce also provides integration capability for MapReduce code written in any Hadoop supported language and not only in native Java or Scala. Developers can easily reuse existing C/C++/Python or any other existing MapReduce code with our In-Memory Accelerator for Hadoop to gain significant performance boost.

So finally - now that we can remove the task and job tracker polling, out of process execution, and the often unnecessary shuffling and sorting from MapReduce and couple it with high-performance in-memory file system we started seeing anywhere between 10x and 100x performance increases on typical MapReduce payloads in our tests.

Below are the results for one of the internal tests that utilizes both In-Memory File System and In-Memory MapReduce. This test was specifically designed to show maximum GridGain's Accelerator performance vs. stock Hadoop distribution for heavy I/O MapReduce jobs:

NodesHadoop, ms.Hadoop + GridGain Accelerator, ms.Boost, %
5 298,000 11,622 2,564%
10 201,350 5,537 3,636%
15 158,997 2,385 6,667%
20 122,008 1,647 7,407%
30 97,833 1,174 8,333%
40 82,771 780 10,612%

hadoop_chart

Tests were performed on a cluster of Dell R610 blades with Dual 8-core CPUs, running Ubuntu 12.4 OS, 10GBE network fabric and stock unmodified Apache Hadoop 2.x distribution and GridGain 5.2 release.

Management and Monitoring
No serious distributed system can be used without comprehensive DevOps support and In-Memory Accelerator for Hadoop comes with a comprehensive unified GUI-based management and monitoring tool called GridGain Visor. Over the last 12 months we've added significant support in Visor for Hadoop Accelerator.

Visor provides deep DevOps capabilities including an operations & telemetry dashboard, database and compute grid management, as well as GGFS management that provides GGFS monitoring and file management between HDFS, local and GGFS file systems.

visor_fm2

visor_ggfs

As part of GridGain Visor, In-Memory Accelerator For Hadoop also comes with a GUI-based file system profiler, which allows you to keep track of all operations your GGFS or HDFS file systems make and identifies potential hot spots.

GGFS profiler tracks speed and throughput of reads, writes, various directory operations, for all files and displays these metrics in a convenient view which allows you to sort based on any profiled criteria, e.g. from slowest write to fastest. Profiler also makes suggestions whenever it is possible to gain performance by loading file data into in-memory GGFS.

visor_profiler

Conclusion
After almost 2 years of development we have a well rounded product that can help you accelerate Hadoop MapReduce up to 100x times with minimal integration and effort. It's based on our innovative high-performance in-memory file system and in-memory MapReduce implementation coupled with one of the best management and monitoring tools.

If you want to be able to say words "milliseconds" and "Hadoop" in one sentence - you need to take a serious look at GridGain's In-Memory Hadoop Accelerator.

hadoop_acc_logo

More Stories By Nikita Ivanov

Nikita Ivanov is founder and CEO of GridGain Systems, started in 2007 and funded by RTP Ventures and Almaz Capital. Nikita has led GridGain to develop advanced and distributed in-memory data processing technologies – the top Java in-memory computing platform starting every 10 seconds around the world today.

Nikita has over 20 years of experience in software application development, building HPC and middleware platforms, contributing to the efforts of other startups and notable companies including Adaptec, Visa and BEA Systems. Nikita was one of the pioneers in using Java technology for server side middleware development while working for one of Europe’s largest system integrators in 1996.

He is an active member of Java middleware community, contributor to the Java specification, and holds a Master’s degree in Electro Mechanics from Baltic State Technical University, Saint Petersburg, Russia.

@ThingsExpo Stories
In his session at 21st Cloud Expo, Carl J. Levine, Senior Technical Evangelist for NS1, will objectively discuss how DNS is used to solve Digital Transformation challenges in large SaaS applications, CDNs, AdTech platforms, and other demanding use cases. Carl J. Levine is the Senior Technical Evangelist for NS1. A veteran of the Internet Infrastructure space, he has over a decade of experience with startups, networking protocols and Internet infrastructure, combined with the unique ability to it...
22nd International Cloud Expo, taking place June 5-7, 2018, at the Javits Center in New York City, NY, and co-located with the 1st DXWorld Expo will feature technical sessions from a rock star conference faculty and the leading industry players in the world. Cloud computing is now being embraced by a majority of enterprises of all sizes. Yesterday's debate about public vs. private has transformed into the reality of hybrid cloud: a recent survey shows that 74% of enterprises have a hybrid cloud ...
"Cloud Academy is an enterprise training platform for the cloud, specifically public clouds. We offer guided learning experiences on AWS, Azure, Google Cloud and all the surrounding methodologies and technologies that you need to know and your teams need to know in order to leverage the full benefits of the cloud," explained Alex Brower, VP of Marketing at Cloud Academy, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clar...
"IBM is really all in on blockchain. We take a look at sort of the history of blockchain ledger technologies. It started out with bitcoin, Ethereum, and IBM evaluated these particular blockchain technologies and found they were anonymous and permissionless and that many companies were looking for permissioned blockchain," stated René Bostic, Technical VP of the IBM Cloud Unit in North America, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Conventi...
Gemini is Yahoo’s native and search advertising platform. To ensure the quality of a complex distributed system that spans multiple products and components and across various desktop websites and mobile app and web experiences – both Yahoo owned and operated and third-party syndication (supply), with complex interaction with more than a billion users and numerous advertisers globally (demand) – it becomes imperative to automate a set of end-to-end tests 24x7 to detect bugs and regression. In th...
Widespread fragmentation is stalling the growth of the IIoT and making it difficult for partners to work together. The number of software platforms, apps, hardware and connectivity standards is creating paralysis among businesses that are afraid of being locked into a solution. EdgeX Foundry is unifying the community around a common IoT edge framework and an ecosystem of interoperable components.
"MobiDev is a software development company and we do complex, custom software development for everybody from entrepreneurs to large enterprises," explained Alan Winters, U.S. Head of Business Development at MobiDev, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
Large industrial manufacturing organizations are adopting the agile principles of cloud software companies. The industrial manufacturing development process has not scaled over time. Now that design CAD teams are geographically distributed, centralizing their work is key. With large multi-gigabyte projects, outdated tools have stifled industrial team agility, time-to-market milestones, and impacted P&L stakeholders.
"Space Monkey by Vivent Smart Home is a product that is a distributed cloud-based edge storage network. Vivent Smart Home, our parent company, is a smart home provider that places a lot of hard drives across homes in North America," explained JT Olds, Director of Engineering, and Brandon Crowfeather, Product Manager, at Vivint Smart Home, in this SYS-CON.tv interview at @ThingsExpo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
"Akvelon is a software development company and we also provide consultancy services to folks who are looking to scale or accelerate their engineering roadmaps," explained Jeremiah Mothersell, Marketing Manager at Akvelon, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
Coca-Cola’s Google powered digital signage system lays the groundwork for a more valuable connection between Coke and its customers. Digital signs pair software with high-resolution displays so that a message can be changed instantly based on what the operator wants to communicate or sell. In their Day 3 Keynote at 21st Cloud Expo, Greg Chambers, Global Group Director, Digital Innovation, Coca-Cola, and Vidya Nagarajan, a Senior Product Manager at Google, discussed how from store operations and ...
"There's plenty of bandwidth out there but it's never in the right place. So what Cedexis does is uses data to work out the best pathways to get data from the origin to the person who wants to get it," explained Simon Jones, Evangelist and Head of Marketing at Cedexis, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
SYS-CON Events announced today that CrowdReviews.com has been named “Media Sponsor” of SYS-CON's 22nd International Cloud Expo, which will take place on June 5–7, 2018, at the Javits Center in New York City, NY. CrowdReviews.com is a transparent online platform for determining which products and services are the best based on the opinion of the crowd. The crowd consists of Internet users that have experienced products and services first-hand and have an interest in letting other potential buye...
SYS-CON Events announced today that Telecom Reseller has been named “Media Sponsor” of SYS-CON's 22nd International Cloud Expo, which will take place on June 5-7, 2018, at the Javits Center in New York, NY. Telecom Reseller reports on Unified Communications, UCaaS, BPaaS for enterprise and SMBs. They report extensively on both customer premises based solutions such as IP-PBX as well as cloud based and hosted platforms.
It is of utmost importance for the future success of WebRTC to ensure that interoperability is operational between web browsers and any WebRTC-compliant client. To be guaranteed as operational and effective, interoperability must be tested extensively by establishing WebRTC data and media connections between different web browsers running on different devices and operating systems. In his session at WebRTC Summit at @ThingsExpo, Dr. Alex Gouaillard, CEO and Founder of CoSMo Software, presented ...
WebRTC is great technology to build your own communication tools. It will be even more exciting experience it with advanced devices, such as a 360 Camera, 360 microphone, and a depth sensor camera. In his session at @ThingsExpo, Masashi Ganeko, a manager at INFOCOM Corporation, introduced two experimental projects from his team and what they learned from them. "Shotoku Tamago" uses the robot audition software HARK to track speakers in 360 video of a remote party. "Virtual Teleport" uses a multip...
A strange thing is happening along the way to the Internet of Things, namely far too many devices to work with and manage. It has become clear that we'll need much higher efficiency user experiences that can allow us to more easily and scalably work with the thousands of devices that will soon be in each of our lives. Enter the conversational interface revolution, combining bots we can literally talk with, gesture to, and even direct with our thoughts, with embedded artificial intelligence, whic...
SYS-CON Events announced today that Evatronix will exhibit at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Evatronix SA offers comprehensive solutions in the design and implementation of electronic systems, in CAD / CAM deployment, and also is a designer and manufacturer of advanced 3D scanners for professional applications.
Leading companies, from the Global Fortune 500 to the smallest companies, are adopting hybrid cloud as the path to business advantage. Hybrid cloud depends on cloud services and on-premises infrastructure working in unison. Successful implementations require new levels of data mobility, enabled by an automated and seamless flow across on-premises and cloud resources. In his general session at 21st Cloud Expo, Greg Tevis, an IBM Storage Software Technical Strategist and Customer Solution Architec...
To get the most out of their data, successful companies are not focusing on queries and data lakes, they are actively integrating analytics into their operations with a data-first application development approach. Real-time adjustments to improve revenues, reduce costs, or mitigate risk rely on applications that minimize latency on a variety of data sources. In his session at @BigDataExpo, Jack Norris, Senior Vice President, Data and Applications at MapR Technologies, reviewed best practices to ...