Welcome!

Open Source Authors: Victoria Livschitz, Ignacio M. Llorente, Carmen Gonzalez, Michael Meiner, Liz McMillan

News Feed Item

Texas A&M System Teams with IBM to Drive Computational Sciences Research through Big Data and Analytics

High performance computing (HPC) system will speed research to advance energy resource management, accelerate materials development, ensure the sustainability of food supplies, and improve animal health

COLLEGE STATION, Texas and ARMONK, N.Y., Jan. 29, 2014 /PRNewswire/ -- Texas A&M University System and IBM (NYSE: IBM) today announced an agreement that is the beginning of a broad research collaboration supported by one of the largest computational sciences infrastructure dedicated to advances in agriculture, geosciences and engineering.

(Logo:  http://photos.prnewswire.com/prnh/20090416/IBMLOGO )

The collaboration will leverage the power of big data analytics and high performance computing (HPC) systems for innovative solutions across a spectrum of challenges, such as improving extraction of Earth-based energy resources, facilitating the smart energy grid, accelerating materials development, improving disease identification and tracking in animals, and fostering better understanding and monitoring of our global food supplies.

"Combining the incredible intellectual and technological resources of Texas A&M University and IBM will further position Texas as a leader in identifying and solving some of the most complex challenges we face," Texas Gov. Rick Perry said. "The work that will be done here will change lives and potentially save lives not just in our state, but our nation and around the world."

IBM will provide the infrastructure for the joint research consisting of Blue Gene/Q technology, Power and System x servers, and General Parallel File Systems (GPFS) Storage Systems. A test of the Blue Gene/Q on campus found that it ran a material sciences problem that previously took weeks to solve and produced a solution in "a fraction of an hour" with much greater analytical depth.

"The Texas A&M System and IBM share a passion and a commitment to research that identifies practical solutions to global challenges," said Chancellor John Sharp, Texas A&M University System. "As the largest research university in the state, this agreement is a major step forward for the A&M System in research computing power. This brings together the best computer scientists and technology in the world to focus on issues so important to our role as a leading research institution and to our land-grant mission of serving the state while also providing resources to serve the greater good throughout the world."

IBM Research and the A&M System intend to align skills, assets and resources to pursue fundamental research, applied development, educational reach and sustainable commercial activities with projects that may include:

  • Sustainable Availability of Food: Efficiently providing sufficient food for a growing global population
  • Disease Spread Tracking, Modeling and Prediction: Early and accurate detection and prediction of infectious disease spread to allow the design, testing and manufacturing of medical countermeasures
  • Energy Resource Management: Responsibly explore, extract, and deliver energy resources
  • New Materials Development: Atomic-level modeling, design and testing of new materials for advanced applications in energy, aerospace, structural and defense applications

As a premier engineering research agency of Texas, Texas A&M Engineering Experiment Station (TEES), which conducts research to provide practical answers to critical state and national needs, will be heavily involved from the Texas A&M University System and according to Katherine Banks, Director of TEES and Vice Chancellor of Engineering, "This is a unique opportunity to meet the needs of engineering, geosciences and agriculture and life sciences researchers to expand in areas not feasible before with small-scale HPC systems."

"IBM and the Texas A&M System have crafted a unique collaboration that could apply computational science and big data analytics to some of the most daunting problems in agriculture, geosciences and engineering," said William LaFontaine, Vice President of High Performance Analytics and Cognitive Markets at IBM. "With the combined research capabilities of both institutions and ready access to state-of-the-art computing technology, we feel this collaboration could produce significant scientific insights leading to industry-changing solutions and material economic impact. We are extremely pleased to be engaged with such extraordinarily capable institutions in the A&M System and look forward to years of discovery and innovation."

TEES partners with academic institutions, governmental agencies, industries, and communities to solve problems to help improve the quality of life, promote economic development, and enhance the educational systems of Texas. It is intimately connected with the College of Engineering of Texas A&M University, which is undergoing an unprecedented growth to become a College with 25,000 students by the year 2025 and hire a new generation of faculty who will be addressing the Nation's needs for research and technology development. 

In support of the long-term research effort, IBM will supply to the A&M System cutting edge technical computing technologies, which will be cloud-enabled. The A&M System will deploy a research computing cloud that will comprise of IBM hardware and software including:

  • Blue Gene/Q: Serving as the foundation of the computing infrastructure, a Blue Gene/Q system consisting of two racks, with more than 2,000 compute nodes, will provide 418 teraflops (TF) of sustained performance for big data analytics, complex modeling, and simulation of molecular dynamics, protein folding and organ modeling.
  • Power Systems: A total of 75 PowerLinux 7R2 servers with POWER7+ microprocessors will be connected by 10GbE into a system optimized for big data and analytics and high performance computing. This complex includes IBM BigInsights and Platform Symphony software, IBM Platform LSF scheduler, and IBM General Parallel File System.
  • System x: The solution will contain an estimated 900 IBM System x dense hyperscale compute nodes as part of an IBM NeXtScale system. Some of the nodes will be managed by Platform Cluster Manager Advanced Edition (PCM-AE) as a University-wide HPC cloud while the others will be managed by Platform Cluster Manager Standard Edition (PCM-SE) and serve as a general purpose compute infrastructure for the geosciences and open source analytics initiatives.
  • Platform Computing: Platform Computing software will be used to manage and accelerate various computational workloads. Platform Symphony will drive big data and analytics, and Platform LSF will drive traditional HPC and technical computing workloads. Platform Computing will also power the creation of an HPC cloud, allowing users within the A&M System access to the system.
  • General Parallel File System (GPFS): Five IBM System x GPFS Storage Servers (GSS) will provide five petabytes (PB) of shared storage for use by the compute building blocks using high-speed networks. GPFS will also include an IBM FlashSystem 820 tier with 10 terabytes (TB) of flash storage, delivering performance to accelerate computation for use primarily by Texas A&M Agrilife Research, Geosciences and university HPC as a part of the research computing infrastructure.

Furthermore, IBM will work with researchers at the A&M System to assess new computing technologies that will be necessary to advance data-driven science discovery and innovation over the next several years.

About IBM
For more information on IBM Research visit www.research.ibm.com.
For more information on IBM Technical Computing visit www.ibm.com/systems/technicalcomputing/.

About the A&M System
The A&M System is one of the largest systems of higher education in the nation, with a budget of $3.5 billion. Through a statewide network of 11 universities, seven state agencies, two service units, a comprehensive health science center and a system administration office, the A&M System educates more than 125,000 students and makes more than 22 million additional educational contacts through service and outreach programs each year. Externally funded research expenditures exceed $780 million and help drive the state's economy.

Contact:
Ciri Haugh
617-693-2345
[email protected]

SOURCE IBM

More Stories By PR Newswire

Copyright © 2007 PR Newswire. All rights reserved. Republication or redistribution of PRNewswire content is expressly prohibited without the prior written consent of PRNewswire. PRNewswire shall not be liable for any errors or delays in the content, or for any actions taken in reliance thereon.

@ThingsExpo Stories
Cultural, regulatory, environmental, political and economic (CREPE) conditions over the past decade are creating cross-industry solution spaces that require processes and technologies from both the Internet of Things (IoT), and Data Management and Analytics (DMA). These solution spaces are evolving into Sensor Analytics Ecosystems (SAE) that represent significant new opportunities for organizations of all types. Public Utilities throughout the world, providing electricity, natural gas and water, are pursuing SmartGrid initiatives that represent one of the more mature examples of SAE. We have s...
The security devil is always in the details of the attack: the ones you've endured, the ones you prepare yourself to fend off, and the ones that, you fear, will catch you completely unaware and defenseless. The Internet of Things (IoT) is nothing if not an endless proliferation of details. It's the vision of a world in which continuous Internet connectivity and addressability is embedded into a growing range of human artifacts, into the natural world, and even into our smartphones, appliances, and physical persons. In the IoT vision, every new "thing" - sensor, actuator, data source, data con...
How do APIs and IoT relate? The answer is not as simple as merely adding an API on top of a dumb device, but rather about understanding the architectural patterns for implementing an IoT fabric. There are typically two or three trends: Exposing the device to a management framework Exposing that management framework to a business centric logic Exposing that business layer and data to end users. This last trend is the IoT stack, which involves a new shift in the separation of what stuff happens, where data lives and where the interface lies. For instance, it's a mix of architectural styles ...
The 3rd International Internet of @ThingsExpo, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that its Call for Papers is now open. The Internet of Things (IoT) is the biggest idea since the creation of the Worldwide Web more than 20 years ago.
The Internet of Things is tied together with a thin strand that is known as time. Coincidentally, at the core of nearly all data analytics is a timestamp. When working with time series data there are a few core principles that everyone should consider, especially across datasets where time is the common boundary. In his session at Internet of @ThingsExpo, Jim Scott, Director of Enterprise Strategy & Architecture at MapR Technologies, discussed single-value, geo-spatial, and log time series data. By focusing on enterprise applications and the data center, he will use OpenTSDB as an example t...
An entirely new security model is needed for the Internet of Things, or is it? Can we save some old and tested controls for this new and different environment? In his session at @ThingsExpo, New York's at the Javits Center, Davi Ottenheimer, EMC Senior Director of Trust, reviewed hands-on lessons with IoT devices and reveal a new risk balance you might not expect. Davi Ottenheimer, EMC Senior Director of Trust, has more than nineteen years' experience managing global security operations and assessments, including a decade of leading incident response and digital forensics. He is co-author of t...
The Internet of Things will greatly expand the opportunities for data collection and new business models driven off of that data. In her session at @ThingsExpo, Esmeralda Swartz, CMO of MetraTech, discussed how for this to be effective you not only need to have infrastructure and operational models capable of utilizing this new phenomenon, but increasingly service providers will need to convince a skeptical public to participate. Get ready to show them the money!
The Internet of Things will put IT to its ultimate test by creating infinite new opportunities to digitize products and services, generate and analyze new data to improve customer satisfaction, and discover new ways to gain a competitive advantage across nearly every industry. In order to help corporate business units to capitalize on the rapidly evolving IoT opportunities, IT must stand up to a new set of challenges. In his session at @ThingsExpo, Jeff Kaplan, Managing Director of THINKstrategies, will examine why IT must finally fulfill its role in support of its SBUs or face a new round of...
One of the biggest challenges when developing connected devices is identifying user value and delivering it through successful user experiences. In his session at Internet of @ThingsExpo, Mike Kuniavsky, Principal Scientist, Innovation Services at PARC, described an IoT-specific approach to user experience design that combines approaches from interaction design, industrial design and service design to create experiences that go beyond simple connected gadgets to create lasting, multi-device experiences grounded in people's real needs and desires.
Enthusiasm for the Internet of Things has reached an all-time high. In 2013 alone, venture capitalists spent more than $1 billion dollars investing in the IoT space. With "smart" appliances and devices, IoT covers wearable smart devices, cloud services to hardware companies. Nest, a Google company, detects temperatures inside homes and automatically adjusts it by tracking its user's habit. These technologies are quickly developing and with it come challenges such as bridging infrastructure gaps, abiding by privacy concerns and making the concept a reality. These challenges can't be addressed w...
The Domain Name Service (DNS) is one of the most important components in networking infrastructure, enabling users and services to access applications by translating URLs (names) into IP addresses (numbers). Because every icon and URL and all embedded content on a website requires a DNS lookup loading complex sites necessitates hundreds of DNS queries. In addition, as more internet-enabled ‘Things' get connected, people will rely on DNS to name and find their fridges, toasters and toilets. According to a recent IDG Research Services Survey this rate of traffic will only grow. What's driving t...
Connected devices and the Internet of Things are getting significant momentum in 2014. In his session at Internet of @ThingsExpo, Jim Hunter, Chief Scientist & Technology Evangelist at Greenwave Systems, examined three key elements that together will drive mass adoption of the IoT before the end of 2015. The first element is the recent advent of robust open source protocols (like AllJoyn and WebRTC) that facilitate M2M communication. The second is broad availability of flexible, cost-effective storage designed to handle the massive surge in back-end data in a world where timely analytics is e...
Scott Jenson leads a project called The Physical Web within the Chrome team at Google. Project members are working to take the scalability and openness of the web and use it to talk to the exponentially exploding range of smart devices. Nearly every company today working on the IoT comes up with the same basic solution: use my server and you'll be fine. But if we really believe there will be trillions of these devices, that just can't scale. We need a system that is open a scalable and by using the URL as a basic building block, we open this up and get the same resilience that the web enjoys.
We are reaching the end of the beginning with WebRTC, and real systems using this technology have begun to appear. One challenge that faces every WebRTC deployment (in some form or another) is identity management. For example, if you have an existing service – possibly built on a variety of different PaaS/SaaS offerings – and you want to add real-time communications you are faced with a challenge relating to user management, authentication, authorization, and validation. Service providers will want to use their existing identities, but these will have credentials already that are (hopefully) i...
"Matrix is an ambitious open standard and implementation that's set up to break down the fragmentation problems that exist in IP messaging and VoIP communication," explained John Woolf, Technical Evangelist at Matrix, in this SYS-CON.tv interview at @ThingsExpo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
P2P RTC will impact the landscape of communications, shifting from traditional telephony style communications models to OTT (Over-The-Top) cloud assisted & PaaS (Platform as a Service) communication services. The P2P shift will impact many areas of our lives, from mobile communication, human interactive web services, RTC and telephony infrastructure, user federation, security and privacy implications, business costs, and scalability. In his session at @ThingsExpo, Robin Raymond, Chief Architect at Hookflash, will walk through the shifting landscape of traditional telephone and voice services ...
Explosive growth in connected devices. Enormous amounts of data for collection and analysis. Critical use of data for split-second decision making and actionable information. All three are factors in making the Internet of Things a reality. Yet, any one factor would have an IT organization pondering its infrastructure strategy. How should your organization enhance its IT framework to enable an Internet of Things implementation? In his session at Internet of @ThingsExpo, James Kirkland, Chief Architect for the Internet of Things and Intelligent Systems at Red Hat, described how to revolutioniz...
Bit6 today issued a challenge to the technology community implementing Web Real Time Communication (WebRTC). To leap beyond WebRTC’s significant limitations and fully leverage its underlying value to accelerate innovation, application developers need to consider the entire communications ecosystem.
The definition of IoT is not new, in fact it’s been around for over a decade. What has changed is the public's awareness that the technology we use on a daily basis has caught up on the vision of an always on, always connected world. If you look into the details of what comprises the IoT, you’ll see that it includes everything from cloud computing, Big Data analytics, “Things,” Web communication, applications, network, storage, etc. It is essentially including everything connected online from hardware to software, or as we like to say, it’s an Internet of many different things. The difference ...
Cloud Expo 2014 TV commercials will feature @ThingsExpo, which was launched in June, 2014 at New York City's Javits Center as the largest 'Internet of Things' event in the world.