Welcome!

Open Source Cloud Authors: Pat Romanski, Elizabeth White, Zakia Bouachraoui, Liz McMillan, Yeshim Deniz

Related Topics: Open Source Cloud

Open Source Cloud: Article

Achieving High Performance at Low Cost

The Dual Core Commodity Cluster Advantage

Advances in clustering technology have redefined the price-to-performance curve for many High Performance Computing (HPC) application areas. The use of specialized high-speed interconnects and fast commodity processors have pushed the envelope to where it is today.

Not all applications need this level of hardware (and cost) to achieve leading-edge price to performance. Indeed, there have been several technological advances that may invite a step back from the traditional edge-of-technology approach to HPC clustering. These advances include the following developments:

  • Introduction of low-cost high-performance multi-core processors
  • Introduction of high-density motherboards and packaging solutions
  • Introduction of optimized Linux Gigabit Ethernet performance
Of particular importance is the fact that these advances are in the commodity sector where high demand and economies of scale have created reasonable price points. Furthermore, alternative high-cost approaches that employ enhanced interconnects and multi-socket motherboards may not be required for certain application classes. Users in this category can expect the commodity approach to deliver new levels of industry-leading price to performance.

In this article, we will discuss how these advances can be used to optimize cluster performance. In addition, we will highlight application areas where these types of clusters are expected to provide optimum performance.

Gaining the Multi-Core Advantage
The multi-core revolution is here. All major processor families have begun using multiple CPU cores to enhance performance. Currently, dual core processors are available at various performance and price levels. Remarkably, most HPC users can immediately benefit from these advances, as most HPC cluster software is designed to use multiple processors.

Specifically, current dual core designs allow HPC users to effectively double the number of processing units while still enjoying traditional commodity price points. In the HPC market, more CPUs are always welcome, but the right design (choice of processor, motherboard, and packaging) is critical to achieving the desired performance.

The recently introduced Pentium D (Presler) processor and Xeon 3000 processers from Intel are examples of commodity high-performance processors. The Presler series is a dual core processor manufactured using the latest 65nm process and is currently available at speeds up to 3.40 GHz. More important for HPC users is that each Presler has a total of 4MB of on-chip cache that it divides evenly between the two cores (2MB each). These caches are fed using an 800MHz FSB and DDR2 memory.

In the HPC cluster sector, the processor battle has typically been between the high-end Intel Xeon or the AMD Opteron. Little consideration has been given to "lesser processors" in the HPC space. As this report will show, this assumption may not hold when actual price and performance numbers are determined.

Check the Numbers - Presler Is on Top
The SPEC benchmarks are usually a good rating of overall processors performance. Table 1 shows the SPEC benchmarks for an Intel Pentium D (model 940) and an AMD Opteron (model 270). Pentium D 940 performs at a level 10% greater than the Opteron 270, yet at this point in time, it's priced at half the cost of an Opteron 270.

While the SPEC benchmarks are an important yardstick, real application benchmarks often provide a second data point with which to compare processors. The GROMACS molecular dynamics package is known to push processors very hard and is therefore a good test of overall number-crunching capability. The results shown in Table 2 are for the Gromacs Benchmark Suite (Linux Version 3.3). See the references at the end of this article for more information on GROMACS. All results are normalized to the Pentium D (lower means slower) and were run using one processor.

The results show a substantial performance advantage over the Opteron 270 processor. The Opteron 270 numbers were taken from the Gromacs Web site (www.gromacs.org).

Breakthrough Design - The Caretta Motherboard
When designing clusters, the "more is better" model often works. However, the number of processors (and hence cores) that can be placed on a motherboard needs to be considered carefully. Modern cluster designs currently take advantage of dual socket motherboards and single core processors. While this approach has helped improve processor density, extending this design with dual cores may have some unexpected results. Using dual core processors on dual socket motherboards requires that the memory subsystems and interconnect now service four cores (instead of two) at the same time.

This situation can, in certain cases, seriously degrade the maximum achievable performance of each core. Optimizing onboard memory subsystems is one way to mitigate memory contention, but this approach also introduces a "nonlocal" or NUMA (Non-uniform Memory Access) type of memory structure. In the end, the application determines the best approach, but rethinking the dense core motherboard approach may have some advantages.

A potentially more optimal solution for many applications would be a small single socket motherboard on which a dual core processor can reside. Such a system would resemble current dual socket motherboards/single core clusters designs in use today, on which memory and interconnect contention is well understood.

The recent introduction of the Intel Caretta motherboard (S3000PT) has been designed to fill this need. The Caretta motherboard supports the Intel Xeon 3000, Pentium D, and Pentium 4 processors, four DIMM slots (DDR2 533/667 with ECC, two-way interleaved, unbuffered), Integrated two port SATA 3.0Gb/s with RAID 0 &1, an ATI ES1000 (16MB), Dual Gigabit Ethernet LAN, and a 5.95 inch x13 inch Form Factor. Interestingly, the Form Factor is one half the size of an Extended ATX motherboard (12"x13"). These dimensions allow a standard Rack Mount ATX enclosure to hold two Caretta motherboards.

The Caretta allows the density found on dualcore/dualsocket motherboards, but provides each processor with its own local memory environment.

This approach has further advantages as well. As more cores/processors are placed on the motherboard, a node failure (motherboard/power supply/hard drive) removes all the cores/processors from the cluster. By using a separate motherboard for each processor, failures are limited to two cores (one processor).

The HyperBlade Advantage
When deploying a high density production HPC cluster, correct system packaging will ensure continuous operation. While many users find utility in deploying 1U server packaging solutions, blade systems are designed with a higher level of custom integration. Blades are typically easier to manage, but more expensive that 1U servers. A hybrid solution where commodity components can be packaged in a blade-like fashion has been developed by Appro International. The advantages of this solution include the use of commodity components inside the "blade" and the integration and manageability of bladed systems.

Like blades, the Appro HyperBlades are modular servers plugged into a common backplane that eliminates cable clutter. By using a vertical mount approach, the Appro HyperBlade offers an enhanced density, providing up to 50 servers in a standard 42U rack cabinet. Large and smaller rack systems are available as well. Because the HyperBlade is designed to include the flexibility of a typical 1U server, high speed interconnects options - including Myrinet, Dolphin, Quadrics and InfiniBand™ - are easily deployed.

In addition, HyperBlades offer the power advantage of 1U servers while, at the same time, they provide an integrated power control and serial management capability found in more expensive blade systems. Finally, each Appro HyperBlade can hold two Caretta motherboards, thus providing excellent processor density (four cores per HyperBlade) and easy management.

The Gigabit Ethernet Advantage
While there are many choices for cluster interconnects, the preferred and lowest cost option is Gigabit Ethernet. While often dismissed as underpowered for today's clusters, actual tests show the exact opposite is true for some application classes. Shown in Figure 1 is a NetPIPE TCP throughput graph for a Gigabit Ethernet link between two Pentium D 940 processors.

The connection used an onboard Intel 82573 chipset, an e1000 driver, and a 1500 byte MTU. It should be noted that the single byte latency was 36 microseconds. Not all applications can scale well with this level of performance. However, there are many that will find commodity Gigabit Ethernet more than adequate for their computing needs.


More Stories By Douglas Eadline

Dr. Douglas Eadline has over 25 years of experience in high-performance computing. You can contact him through Basement Supercomputing (http://basement-supercomputing.com).

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


IoT & Smart Cities Stories
While the focus and objectives of IoT initiatives are many and diverse, they all share a few common attributes, and one of those is the network. Commonly, that network includes the Internet, over which there isn't any real control for performance and availability. Or is there? The current state of the art for Big Data analytics, as applied to network telemetry, offers new opportunities for improving and assuring operational integrity. In his session at @ThingsExpo, Jim Frey, Vice President of S...
@CloudEXPO and @ExpoDX, two of the most influential technology events in the world, have hosted hundreds of sponsors and exhibitors since our launch 10 years ago. @CloudEXPO and @ExpoDX New York and Silicon Valley provide a full year of face-to-face marketing opportunities for your company. Each sponsorship and exhibit package comes with pre and post-show marketing programs. By sponsoring and exhibiting in New York and Silicon Valley, you reach a full complement of decision makers and buyers in ...
The Internet of Things is clearly many things: data collection and analytics, wearables, Smart Grids and Smart Cities, the Industrial Internet, and more. Cool platforms like Arduino, Raspberry Pi, Intel's Galileo and Edison, and a diverse world of sensors are making the IoT a great toy box for developers in all these areas. In this Power Panel at @ThingsExpo, moderated by Conference Chair Roger Strukhoff, panelists discussed what things are the most important, which will have the most profound e...
Two weeks ago (November 3-5), I attended the Cloud Expo Silicon Valley as a speaker, where I presented on the security and privacy due diligence requirements for cloud solutions. Cloud security is a topical issue for every CIO, CISO, and technology buyer. Decision-makers are always looking for insights on how to mitigate the security risks of implementing and using cloud solutions. Based on the presentation topics covered at the conference, as well as the general discussions heard between sessio...
The Jevons Paradox suggests that when technological advances increase efficiency of a resource, it results in an overall increase in consumption. Writing on the increased use of coal as a result of technological improvements, 19th-century economist William Stanley Jevons found that these improvements led to the development of new ways to utilize coal. In his session at 19th Cloud Expo, Mark Thiele, Chief Strategy Officer for Apcera, compared the Jevons Paradox to modern-day enterprise IT, examin...
Rodrigo Coutinho is part of OutSystems' founders' team and currently the Head of Product Design. He provides a cross-functional role where he supports Product Management in defining the positioning and direction of the Agile Platform, while at the same time promoting model-based development and new techniques to deliver applications in the cloud.
In his keynote at 18th Cloud Expo, Andrew Keys, Co-Founder of ConsenSys Enterprise, provided an overview of the evolution of the Internet and the Database and the future of their combination – the Blockchain. Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life settl...
There are many examples of disruption in consumer space – Uber disrupting the cab industry, Airbnb disrupting the hospitality industry and so on; but have you wondered who is disrupting support and operations? AISERA helps make businesses and customers successful by offering consumer-like user experience for support and operations. We have built the world’s first AI-driven IT / HR / Cloud / Customer Support and Operations solution.
LogRocket helps product teams develop better experiences for users by recording videos of user sessions with logs and network data. It identifies UX problems and reveals the root cause of every bug. LogRocket presents impactful errors on a website, and how to reproduce it. With LogRocket, users can replay problems.
Data Theorem is a leading provider of modern application security. Its core mission is to analyze and secure any modern application anytime, anywhere. The Data Theorem Analyzer Engine continuously scans APIs and mobile applications in search of security flaws and data privacy gaps. Data Theorem products help organizations build safer applications that maximize data security and brand protection. The company has detected more than 300 million application eavesdropping incidents and currently secu...