Welcome!

Open Source Cloud Authors: Lori MacVittie, Elizabeth White, Pat Romanski, Dan Potter, XebiaLabs Blog

Blog Feed Post

Diving into H2O

by Joseph Rickert One of the remarkable features of the R language is its adaptability. Motivated by R’s popularity and helped by R’s expressive power and transparency developers working on other platforms display what looks like inexhaustible creativity in providing seamless interfaces to software that complements R’s strengths. The H2O R package that connects to 0xdata’s H2O software (Apache 2.0 License) is an example of this kind of creativity. According to the 0xdata website, H2O is “The Open Source In-Memory, Prediction Engine for Big Data Science”. Indeed, H2O offers an impressive array of machine learning algorithms. The H2O R package provides functions for building GLM, GBM, Kmeans, Naive Bayes, Principal Components Analysis, Principal Components Regression, Random Forests and Deep Learning (multi-layer neural net models). Examples with timing information of running all of these models on fairly large data sets are available on the 0xdata website. Execution speeds are very impressive. In this post, I thought I would start a little slower and look at H2O from an R point of View. H2O is a Java Virtual Machine that is optimized for doing “in memory” processing of distributed, parallel machine learning algorithms on clusters. A “cluster” is a software construct that can be can be fired up on your laptop, on a server, or across the multiple nodes of a cluster of real machines, including computers that form a Hadoop cluster. According to the documentation a cluster’s “memory capacity is the sum across all H2O nodes in the cluster”. So, as I understand it, if you were to build a 16 node cluster of machines each having 64GB of DRAM, and you installed H2O everything then you could run the H2O machine learning algorithms using a terabyte of memory. Underneath the covers, the H2O JVM sits on an in-memory, non-persistent key-value (KV) store that uses a distributed JAVA memory model. The KV store holds state information, all results and the big data itself. H2O keeps the data in a heap. When the heap gets full, i.e. when you are working with more data than physical DRAM, H20 swaps to disk. (See Cliff Click’s blog for the details.) The main point here is that the data is not in R. R only has a pointer to the data, an S4 object containing the IP address, port and key name for the data sitting in H2O. The R H2O package communicates with the H2O JVM over a REST API. R sends RCurl commands and H2O sends back JSON responses. Data ingestion, however, does not happen via the REST API. Rather, an R user calls a function that causes the data to be directly parsed into the H2O KV store. The H2O R package provides several functions for doing this Including: h20.importFile() which imports and parses files from a local directory, h20.importURL() which imports and pareses files from a website, and h2o.importHDFS() which imports and parses HDFS files sitting on a Hadoop cluster. So much for the background: let’s get started with H2O. The first thing you need to do is to get Java running on your machine. If you don’t already have Java the default download ought to be just fine. Then fetch and install the H2O R package. Note that the h2o.jar executable is currently shipped with the h2o R package. The following code from the 0xdata website ran just fine from RStudio on my PC: # The following two commands remove any previously installed H2O packages for R. if ("package:h2o" %in% search()) { detach("package:h2o", unload=TRUE) } if ("h2o" %in% rownames(installed.packages())) { remove.packages("h2o") }   # Next, we download, install and initialize the H2O package for R. install.packages("h2o", repos=(c("http://s3.amazonaws.com/h2o-release/h2o/rel-kahan/5/R", getOption("repos"))))   library(h2o) localH2O = h2o.init()   # Finally, let's run a demo to see H2O at work. demo(h2o.glm) Created by Pretty R at inside-R.org Note that the function h20.init() uses the defaults to start up R on your local machine. Users can also provide parameters to specify an IP address and port number in order to connect to a remote instance of H20 running on a cluster. h2o.init(Xmx="10g") will start up the H2O KV store with 10GB of RAM. demo(h2o,glm) runs the glm demo to let you know that everything is working just fine. I will save examining the model for another time. Instead let's look at some other H2O functionality. The first thing to get straight with H2O is to be clear about when you are working in R and when you are working in the H2O JVM. The H2O R package implements several R functions that are wrappers to H2O native functions. "H2O supports an R-like language" (See a note on R) but sometimes things behave differently than an R programmer might expect. For example, the R code: y <- apply(iris[,1:4],2,sum)y produces the following result: sepal.length sepal.width petal.length petal.width 876.5    458.6 563.7  179.9 now, let's see how things work in h2o, code loads h2o package, starts a local instance of uploads iris data set into from r package and produces very r-like summary. library(h2o) # load library localh2o =h2o.init() initial locl instance # upload file instance iris.hex >

Read the original blog entry...

More Stories By David Smith

David Smith is Vice President of Marketing and Community at Revolution Analytics. He has a long history with the R and statistics communities. After graduating with a degree in Statistics from the University of Adelaide, South Australia, he spent four years researching statistical methodology at Lancaster University in the United Kingdom, where he also developed a number of packages for the S-PLUS statistical modeling environment. He continued his association with S-PLUS at Insightful (now TIBCO Spotfire) overseeing the product management of S-PLUS and other statistical and data mining products.<

David smith is the co-author (with Bill Venables) of the popular tutorial manual, An Introduction to R, and one of the originating developers of the ESS: Emacs Speaks Statistics project. Today, he leads marketing for REvolution R, supports R communities worldwide, and is responsible for the Revolutions blog. Prior to joining Revolution Analytics, he served as vice president of product management at Zynchros, Inc. Follow him on twitter at @RevoDavid

@ThingsExpo Stories
Machine Learning helps make complex systems more efficient. By applying advanced Machine Learning techniques such as Cognitive Fingerprinting, wind project operators can utilize these tools to learn from collected data, detect regular patterns, and optimize their own operations. In his session at 18th Cloud Expo, Stuart Gillen, Director of Business Development at SparkCognition, discussed how research has demonstrated the value of Machine Learning in delivering next generation analytics to imp...
The 19th International Cloud Expo has announced that its Call for Papers is open. Cloud Expo, to be held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA, brings together Cloud Computing, Big Data, Internet of Things, DevOps, Digital Transformation, Microservices and WebRTC to one location. With cloud computing driving a higher percentage of enterprise IT budgets every year, it becomes increasingly important to plant your flag in this fast-expanding business opportuni...
The Internet of Things will challenge the status quo of how IT and development organizations operate. Or will it? Certainly the fog layer of IoT requires special insights about data ontology, security and transactional integrity. But the developmental challenges are the same: People, Process and Platform. In his session at @ThingsExpo, Craig Sproule, CEO of Metavine, demonstrated how to move beyond today's coding paradigm and shared the must-have mindsets for removing complexity from the develo...
SYS-CON Events announced today that MangoApps will exhibit at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. MangoApps provides modern company intranets and team collaboration software, allowing workers to stay connected and productive from anywhere in the world and from any device.
Large scale deployments present unique planning challenges, system commissioning hurdles between IT and OT and demand careful system hand-off orchestration. In his session at @ThingsExpo, Jeff Smith, Senior Director and a founding member of Incenergy, will discuss some of the key tactics to ensure delivery success based on his experience of the last two years deploying Industrial IoT systems across four continents.
Basho Technologies has announced the latest release of Basho Riak TS, version 1.3. Riak TS is an enterprise-grade NoSQL database optimized for Internet of Things (IoT). The open source version enables developers to download the software for free and use it in production as well as make contributions to the code and develop applications around Riak TS. Enhancements to Riak TS make it quick, easy and cost-effective to spin up an instance to test new ideas and build IoT applications. In addition to...
Identity is in everything and customers are looking to their providers to ensure the security of their identities, transactions and data. With the increased reliance on cloud-based services, service providers must build security and trust into their offerings, adding value to customers and improving the user experience. Making identity, security and privacy easy for customers provides a unique advantage over the competition.
"We've discovered that after shows 80% if leads that people get, 80% of the conversations end up on the show floor, meaning people forget about it, people forget who they talk to, people forget that there are actual business opportunities to be had here so we try to help out and keep the conversations going," explained Jeff Mesnik, Founder and President of ContentMX, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York City, NY.
"There's a growing demand from users for things to be faster. When you think about all the transactions or interactions users will have with your product and everything that is between those transactions and interactions - what drives us at Catchpoint Systems is the idea to measure that and to analyze it," explained Leo Vasiliou, Director of Web Performance Engineering at Catchpoint Systems, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York Ci...
Internet of @ThingsExpo, taking place November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA, is co-located with the 19th International Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world and ThingsExpo Silicon Valley Call for Papers is now open.
I wanted to gather all of my Internet of Things (IOT) blogs into a single blog (that I could later use with my University of San Francisco (USF) Big Data “MBA” course). However as I started to pull these blogs together, I realized that my IOT discussion lacked a vision; it lacked an end point towards which an organization could drive their IOT envisioning, proof of value, app dev, data engineering and data science efforts. And I think that the IOT end point is really quite simple…
"My role is working with customers, helping them go through this digital transformation. I spend a lot of time talking to banks, big industries, manufacturers working through how they are integrating and transforming their IT platforms and moving them forward," explained William Morrish, General Manager Product Sales at Interoute, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York City, NY.
You think you know what’s in your data. But do you? Most organizations are now aware of the business intelligence represented by their data. Data science stands to take this to a level you never thought of – literally. The techniques of data science, when used with the capabilities of Big Data technologies, can make connections you had not yet imagined, helping you discover new insights and ask new questions of your data. In his session at @ThingsExpo, Sarbjit Sarkaria, data science team lead ...
Extracting business value from Internet of Things (IoT) data doesn’t happen overnight. There are several requirements that must be satisfied, including IoT device enablement, data analysis, real-time detection of complex events and automated orchestration of actions. Unfortunately, too many companies fall short in achieving their business goals by implementing incomplete solutions or not focusing on tangible use cases. In his general session at @ThingsExpo, Dave McCarthy, Director of Products...
WebRTC is bringing significant change to the communications landscape that will bridge the worlds of web and telephony, making the Internet the new standard for communications. Cloud9 took the road less traveled and used WebRTC to create a downloadable enterprise-grade communications platform that is changing the communication dynamic in the financial sector. In his session at @ThingsExpo, Leo Papadopoulos, CTO of Cloud9, discussed the importance of WebRTC and how it enables companies to focus...
Verizon Communications Inc. (NYSE, Nasdaq: VZ) and Yahoo! Inc. (Nasdaq: YHOO) have entered into a definitive agreement under which Verizon will acquire Yahoo's operating business for approximately $4.83 billion in cash, subject to customary closing adjustments. Yahoo informs, connects and entertains a global audience of more than 1 billion monthly active users** -- including 600 million monthly active mobile users*** through its search, communications and digital content products. Yahoo also co...
A critical component of any IoT project is what to do with all the data being generated. This data needs to be captured, processed, structured, and stored in a way to facilitate different kinds of queries. Traditional data warehouse and analytical systems are mature technologies that can be used to handle certain kinds of queries, but they are not always well suited to many problems, particularly when there is a need for real-time insights.
Amazon has gradually rolled out parts of its IoT offerings in the last year, but these are just the tip of the iceberg. In addition to optimizing their back-end AWS offerings, Amazon is laying the ground work to be a major force in IoT – especially in the connected home and office. Amazon is extending its reach by building on its dominant Cloud IoT platform, its Dash Button strategy, recently announced Replenishment Services, the Echo/Alexa voice recognition control platform, the 6-7 strategic...
The best-practices for building IoT applications with Go Code that attendees can use to build their own IoT applications. In his session at @ThingsExpo, Indraneel Mitra, Senior Solutions Architect & Technology Evangelist at Cognizant, provided valuable information and resources for both novice and experienced developers on how to get started with IoT and Golang in a day. He also provided information on how to use Intel Arduino Kit, Go Robotics API and AWS IoT stack to build an application tha...
IoT generates lots of temporal data. But how do you unlock its value? You need to discover patterns that are repeatable in vast quantities of data, understand their meaning, and implement scalable monitoring across multiple data streams in order to monetize the discoveries and insights. Motif discovery and deep learning platforms are emerging to visualize sensor data, to search for patterns and to build application that can monitor real time streams efficiently. In his session at @ThingsExpo, ...