Open Source Cloud Authors: Liz McMillan, Elizabeth White, Mehdi Daoudi, Jason Bloomberg, Yeshim Deniz

Related Topics: @DXWorldExpo, Open Source Cloud, Apache

@DXWorldExpo: Blog Post

NoSQL Integration with the Hadoop Ecosystem By @MapR | @BigDataExpo

How NoSQL and Hadoop can work together to tackle Big Data challenges

Apache Hadoop is an open source Big Data processing platform that comes with its own extensive ecosystem to support various business and technical needs. Hadoop's specialty is large-scale processing and analytics over volumes of data that cannot be efficiently handled by traditional technologies. Hadoop is often complemented by the class of database management technologies referred to as NoSQL, which is also great for large volumes of data, but NoSQL is more about fast reads and writes than about massive processing. NoSQL and Hadoop can work together to tackle big data challenges.

One thing to note up front is that because Hadoop has an associated storage system, it is sometimes mistakenly assumed to be a database management system. It was also sometimes classified as a NoSQL system during its early days, though the NoSQL label is generally accepted today to refer specifically to databases. And while Hadoop is ideal for storing a variety of data types, it is actually about spreading work across many servers in a cluster, which is something that databases were generally not designed to do.

Hadoop Summarized
To describe what Hadoop covers, let's first look at the four primary components of Hadoop:

  • MapReduce: A distributed programming framework that manages the spreading of work across many nodes in a cluster
  • Hadoop Common: A package containing the libraries and utilities to support associated Hadoop modules
  • YARN: A resource management platform (Yet Another Resource Negotiator) for managing computing resources and scheduling tasks
  • HDFS: The Hadoop Distributed File System which manages Hadoop data, and can be substituted with more sophisticated file systems to handle business-critical needs

Each of these components play a role in defining what Hadoop is. Collectively these Hadoop components support the processing of data-intensive distributed applications, enabling them to work in a deployment potentially made up of thousands of nodes and petabytes of data. Each node is an independent computer and is often assigned a subtask by Hadoop that is run in parallel with other nodes to efficiently complete a much bigger task.

MapReduce and Hadoop Common represent the data processing tools that make Hadoop a great platform for big data. MapReduce supports efficient parallel processing, and its function is to ship applications (which will do the processing) to the nodes where the data reside. This enables "data locality" in which nodes perform the processing on the data they store, to minimize excess network traffic that would result from having nodes process data that reside on other nodes in the cluster.

YARN is a relatively new component to Hadoop that helps schedule tasks across the cluster. Known as MapReduce 2.0 (or "MRv2"), it represents a framework that allows you to run new non-MapReduce jobs in your Hadoop cluster in addition to your standard MapReduce jobs.

HDFS provides the storage functionality in Hadoop and splits large files into small blocks (default is 64 MB) and distributes it across the clustered nodes. It ensures data is replicated so that if a node in the cluster fails, data replicas minimize the risk of data loss. In other words, it has the key design goal of overcoming hardware failure, which is critical particularly when low-cost, commodity hardware is used. Another important design goal in Hadoop was to enable swapping out HDFS for another file system. Some Hadoop vendors took advantage of this architecture to provide value-added capabilities beyond those which standard HDFS provides. As an example, MapR Technologies provides MapR-FS which improves the high availability, disaster recovery, and snapshot capabilities over HDFS, while also adding full read/write capabilities, true NFS access, and higher performance.

MapReduce and HDFS are derived from Google's work on MapReduce and the Google File System (GFS). In addition to the above components, Hadoop consists of a number of related projects like Apache Hive, Apache HBase, and Apache Pig. The wide variety of projects in the Hadoop ecosystem gives you the opportunity to select the right tool for specific use cases with specific requirements when processing and analyzing big data.

... And Now NoSQL
NoSQL, on the other hand, is a category of database management systems, but differs from the likes of Oracle, DB2, MySQL, and other relational database management systems (RDBMS), and so are often described as "non-relational." This means they don't rely on the relational model, in which data is stored in tabular form with consistent rows and columns. Instead, they are more free-form in structure to accommodate varying and changing data types.

NoSQL databases provide a fast and efficient mechanism for the storage and retrieval of data, promoting goals such as simplicity, horizontal scaling capability, and better availability. NoSQL databases are used most often in big data and analytic applications, particularly ones in which fast data access is more important than large-scale, parallel processing.

How Can Hadoop and NoSQL Work Together?
While Hadoop and NoSQL do not have exactly the same functions, they are both related to solving big data problems. The Hadoop framework is used most commonly for processing huge amounts of data, and NoSQL is designed for fast, efficient storage and retrieval of large volumes of data. Considering that many early deployments of Hadoop entailed integrations with RDBMSs, integrating Hadoop with NoSQL was a logical next step.

In many cases, data sets processed in the Hadoop system are originally created and stored in a NoSQL database. Whenever you have interactive applications that create new data, you should consider how you can analyze that data to derive important business insights. For example, you might use NoSQL to store and deliver messages between end users, and then use Hadoop to scan the aggregate collection of messages for sentiment analysis. Tools like Apache Sqoop, database-specific connectors, or third-party data integration products let you copy data from a NoSQL system into Hadoop for the large-scale processing.

There are also independent use cases which may not require the support of both platforms. For example, if it is only necessary to perform parallel processing of simple log data, and then store it in HDFS, then Hadoop alone may be sufficient. Similarly, if the only required function in a given use case is to store and then retrieve data such as web application session state, a NoSQL database will be sufficient. But these "standalone" use cases might be short-lived, as enterprises will continue to find more ways to leverage seemingly low value data into important business insights.

An emerging architecture for NoSQL and Hadoop integration that's worth considering entails the "in-Hadoop" databases that are built specifically to run within the Hadoop framework. Examples include Apache HBase, Apache Accumulo, as well as the MapR-DB In-Hadoop NoSQL database, which was architected for business-critical production deployments. With the combined advantages of both Hadoop's processing framework and NoSQL's fast data access, but without the overhead of moving data from one cluster to another, the Enterprise Database Edition of the MapR Distribution including Hadoop supports high performance, extreme scalability, high availability, snapshots, disaster recovery, integrated security, and more. The best of both technologies make this an ideal environment for big data solutions.

To learn more about how you can optimize your enterprise architecture, down this free whitepaper: Optimize Your Enterprise Architecture with Hadoop and NoSQL.

More Stories By Dale Kim

Dale is Director of Industry Solutions at MapR. His technical and managerial experience includes work with relational databases, as well as non-relational data in the areas of search, content management, and NoSQL. Dale holds an MBA from Santa Clara University, and a BA in Computer Science from the UC Berkeley.

@ThingsExpo Stories
DXWordEXPO New York 2018, colocated with CloudEXPO New York 2018 will be held November 11-13, 2018, in New York City and will bring together Cloud Computing, FinTech and Blockchain, Digital Transformation, Big Data, Internet of Things, DevOps, AI, Machine Learning and WebRTC to one location.
DXWorldEXPO LLC announced today that "Miami Blockchain Event by FinTechEXPO" has announced that its Call for Papers is now open. The two-day event will present 20 top Blockchain experts. All speaking inquiries which covers the following information can be submitted by email to [email protected] Financial enterprises in New York City, London, Singapore, and other world financial capitals are embracing a new generation of smart, automated FinTech that eliminates many cumbersome, slow, and expe...
DXWorldEXPO LLC announced today that ICOHOLDER named "Media Sponsor" of Miami Blockchain Event by FinTechEXPO. ICOHOLDER give you detailed information and help the community to invest in the trusty projects. Miami Blockchain Event by FinTechEXPO has opened its Call for Papers. The two-day event will present 20 top Blockchain experts. All speaking inquiries which covers the following information can be submitted by email to [email protected] Miami Blockchain Event by FinTechEXPO also offers s...
DXWorldEXPO | CloudEXPO are the world's most influential, independent events where Cloud Computing was coined and where technology buyers and vendors meet to experience and discuss the big picture of Digital Transformation and all of the strategies, tactics, and tools they need to realize their goals. Sponsors of DXWorldEXPO | CloudEXPO benefit from unmatched branding, profile building and lead generation opportunities.
With tough new regulations coming to Europe on data privacy in May 2018, Calligo will explain why in reality the effect is global and transforms how you consider critical data. EU GDPR fundamentally rewrites the rules for cloud, Big Data and IoT. In his session at 21st Cloud Expo, Adam Ryan, Vice President and General Manager EMEA at Calligo, examined the regulations and provided insight on how it affects technology, challenges the established rules and will usher in new levels of diligence arou...
Dion Hinchcliffe is an internationally recognized digital expert, bestselling book author, frequent keynote speaker, analyst, futurist, and transformation expert based in Washington, DC. He is currently Chief Strategy Officer at the industry-leading digital strategy and online community solutions firm, 7Summits.
Digital Transformation and Disruption, Amazon Style - What You Can Learn. Chris Kocher is a co-founder of Grey Heron, a management and strategic marketing consulting firm. He has 25+ years in both strategic and hands-on operating experience helping executives and investors build revenues and shareholder value. He has consulted with over 130 companies on innovating with new business models, product strategies and monetization. Chris has held management positions at HP and Symantec in addition to ...
Cloud-enabled transformation has evolved from cost saving measure to business innovation strategy -- one that combines the cloud with cognitive capabilities to drive market disruption. Learn how you can achieve the insight and agility you need to gain a competitive advantage. Industry-acclaimed CTO and cloud expert, Shankar Kalyana presents. Only the most exceptional IBMers are appointed with the rare distinction of IBM Fellow, the highest technical honor in the company. Shankar has also receive...
Enterprises have taken advantage of IoT to achieve important revenue and cost advantages. What is less apparent is how incumbent enterprises operating at scale have, following success with IoT, built analytic, operations management and software development capabilities - ranging from autonomous vehicles to manageable robotics installations. They have embraced these capabilities as if they were Silicon Valley startups.
The standardization of container runtimes and images has sparked the creation of an almost overwhelming number of new open source projects that build on and otherwise work with these specifications. Of course, there's Kubernetes, which orchestrates and manages collections of containers. It was one of the first and best-known examples of projects that make containers truly useful for production use. However, more recently, the container ecosystem has truly exploded. A service mesh like Istio addr...
Predicting the future has never been more challenging - not because of the lack of data but because of the flood of ungoverned and risk laden information. Microsoft states that 2.5 exabytes of data are created every day. Expectations and reliance on data are being pushed to the limits, as demands around hybrid options continue to grow.
Poor data quality and analytics drive down business value. In fact, Gartner estimated that the average financial impact of poor data quality on organizations is $9.7 million per year. But bad data is much more than a cost center. By eroding trust in information, analytics and the business decisions based on these, it is a serious impediment to digital transformation.
Business professionals no longer wonder if they'll migrate to the cloud; it's now a matter of when. The cloud environment has proved to be a major force in transitioning to an agile business model that enables quick decisions and fast implementation that solidify customer relationships. And when the cloud is combined with the power of cognitive computing, it drives innovation and transformation that achieves astounding competitive advantage.
Digital Transformation: Preparing Cloud & IoT Security for the Age of Artificial Intelligence. As automation and artificial intelligence (AI) power solution development and delivery, many businesses need to build backend cloud capabilities. Well-poised organizations, marketing smart devices with AI and BlockChain capabilities prepare to refine compliance and regulatory capabilities in 2018. Volumes of health, financial, technical and privacy data, along with tightening compliance requirements by...
As IoT continues to increase momentum, so does the associated risk. Secure Device Lifecycle Management (DLM) is ranked as one of the most important technology areas of IoT. Driving this trend is the realization that secure support for IoT devices provides companies the ability to deliver high-quality, reliable, secure offerings faster, create new revenue streams, and reduce support costs, all while building a competitive advantage in their markets. In this session, we will use customer use cases...
Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life settlement products to hedge funds and investment banks. After, he co-founded a revenue cycle management company where he learned about Bitcoin and eventually Ethereal. Andrew's role at ConsenSys Enterprise is a mul...
The best way to leverage your Cloud Expo presence as a sponsor and exhibitor is to plan your news announcements around our events. The press covering Cloud Expo and @ThingsExpo will have access to these releases and will amplify your news announcements. More than two dozen Cloud companies either set deals at our shows or have announced their mergers and acquisitions at Cloud Expo. Product announcements during our show provide your company with the most reach through our targeted audiences.
DevOpsSummit New York 2018, colocated with CloudEXPO | DXWorldEXPO New York 2018 will be held November 11-13, 2018, in New York City. Digital Transformation (DX) is a major focus with the introduction of DXWorldEXPO within the program. Successful transformation requires a laser focus on being data-driven and on using all the tools available that enable transformation if they plan to survive over the long term. A total of 88% of Fortune 500 companies from a generation ago are now out of bus...
With 10 simultaneous tracks, keynotes, general sessions and targeted breakout classes, @CloudEXPO and DXWorldEXPO are two of the most important technology events of the year. Since its launch over eight years ago, @CloudEXPO and DXWorldEXPO have presented a rock star faculty as well as showcased hundreds of sponsors and exhibitors! In this blog post, we provide 7 tips on how, as part of our world-class faculty, you can deliver one of the most popular sessions at our events. But before reading...
Cloud Expo | DXWorld Expo have announced the conference tracks for Cloud Expo 2018. Cloud Expo will be held June 5-7, 2018, at the Javits Center in New York City, and November 6-8, 2018, at the Santa Clara Convention Center, Santa Clara, CA. Digital Transformation (DX) is a major focus with the introduction of DX Expo within the program. Successful transformation requires a laser focus on being data-driven and on using all the tools available that enable transformation if they plan to survive ov...